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Abstract Mathematics educators and writers of mathematics education policy documents

continue to emphasize the importance of teachers focusing on and using student thinking to

inform their instructional decisions and interactions with students. In this paper, we

characterize the interactions between a teacher and student(s) that exhibit this focus.

Specifically, we extend previous work in this area by utilizing Piaget’s construct of de-

centering (The language and thought of the child. Meridian Books, Cleveland, 1955) to

explain teachers’ actions relative to both their thinking and their students’ thinking. In

characterizing decentering with respect to a teacher’s focus on student thinking, we use two

illustrations that highlight the importance of decentering in making in-the-moment deci-

sions that are based on student thinking. We also discuss the influence of teacher decen-

tering actions on the quality of student–teacher interactions and their influence on student

learning. We close by discussing various implications of decentering, including how de-

centering is related to other research constructs including teachers’ development and en-

actment of mathematical knowledge for teaching.
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I found myself actually spending time talking to my students about how they in-

terpreted or solved a problem. I became intrigued with the way that my students

looked at concepts in so many different ways. I dared to let my students become the

experts in the field, rather than me.—Claudia

The above quote is from an experienced high school mathematics teacher who shifted her

instruction to have a greater focus on her students’ thinking. Her quest to understand the

meanings of her students’ thinking led to her advancing her mathematical knowledge and

appreciating the diversity in her students’ mathematical thinking. Over the past few

decades, mathematics educators and writers of several policy documents have emphasized

the importance of teachers focusing on and using student thinking to inform their teaching

(Clarke 2008; Franke and Kazemi 2001; Levin et al. 2009; NCTM 1991, 2000). As a

notable example, Cognitively Guided Instruction emerged as a professional development

program with the goal of helping elementary teachers shift their instruction to have a

greater focus on students’ mathematical thinking (Carpenter et al. 2000). Our meaning of

effectively focusing on student thinking is the teacher discerning and acting on student

thinking in ways that support student learning.

Just as it is important that teachers maintain a focus on student thinking during teaching,

Hiebert and Grouws (2007) called for researchers to focus on both the teacher and students

when investigating teaching, and particularly when characterizing student–teacher inter-

actions in the classroom. The authors argued that documenting shifts in teaching and

instruction is more meaningful when done in the context of characterizing student thinking

and learning. Members of the Learning Mathematics for Teaching Project (2011) de-

scribed teaching and instruction as including, ‘‘…not only what teachers say and do, but

also what students say and do…’’ (p. 30). Echoing Hiebert and Grouws’ sentiments, we

add that characterizations of teaching and instruction should include not only what teachers

say and do, but also how teachers think, how students think, and, especially, the ways in

which teachers incorporate student thinking into their practice.

The purpose of this article is to extend the literature on what is entailed in teachers

effectively focusing on and leveraging student thinking during teaching, from the ele-

mentary level (Carpenter et al. 2000; Franke et al. 2011; Franke et al. 2009; Jacobs et al.

2010) to the secondary level. In doing so, we apply Piaget’s construct of decentering

(1955; Steffe and Thompson 2000) to make inferences about a teacher’s ability to effec-

tively focus on student thinking, and illustrate its usefulness in making instructional de-

cisions that are informed by and advance student thinking. By drawing on the construct of

decentering to interpret a teacher’s actions and thinking in the moment1 of teaching, our

work has a different focus than prior related research at the elementary level. Although the

construct of decentering has not been widely used to analyze student–teacher interactions,

we suggest that other constructs such as professional noticing (Jacobs et al. 2010) and

teacher follow-up (Franke et al. 2011) tacitly presume decentering, but have not applied

decentering in a way that is sensitive to the teacher reflecting on and building an in-the-

moment model of student thinking. To illustrate these in-the-moment actions, we share

specific instances of a secondary mathematics teacher attempting to make sense of and act

on student thinking while teaching. These illustrations illuminate the effect of decentering

on student–teacher interactions and a teacher’s ability to effectively understand and draw

on student thinking to inform her instruction.

1 By in the moment of teaching (or in-the-moment), we mean situations in which teachers are in their
classroom interacting with or teaching their students, as opposed to situations in which teachers are re-
flecting on a classroom session that has concluded or watching classroom video.
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Review of literature

Mathematics educators continue to encourage teachers to shift their classroom practices to

align with reform- and research-based instruction. Yet this goal remains difficult to accom-

plish, as interpretations of ‘‘reform- and research-based instruction’’ vary from educator to

educator.2One such interpretation of research-based instruction is that teachers should move

from a focus on computational skills toward a focus on deeper understandings of mathe-

matical ideas, relations, processes, and concepts (Hiebert andCarpenter 1992; Lampert 1990;

NCTM 1989, 2000; National Governors Associations Center for Best Practices and Council

of Chief State School Officers (NGA Center and CCSSO) 2010). To achieve such a focus,

researchers have recommended that students interact in ways that create opportunities to

think, discuss, agree, and disagree about mathematics, so their thinking can be understood by

their teacher and peers (Ball 1993; Bauersfeld 1995; Cobb et al. 1992; Goos 2004; Lampert

1990; Mercer 2000; Nathan and Knuth 2003; O’Connor 1998).

It seems intuitive that increasing student talk about mathematics should lead to im-

proved learning, as increasing student talk provides students the opportunity to share and

reflect on their thinking, and teachers the opportunity to better understand their students’

thinking (Woodward and Irwin 2005). However, there is evidence that increasing student

talk is not sufficient in and of itself to improve student learning (e.g., Kazemi and Stipek

2001; Nathan and Knuth 2003; Truxaw and DeFranco 2007). For example, Nathan and

Knuth (2003) found that increasing the quantity of student talk in a middle grades class-

room did not necessarily improve students’ mathematical understandings. The authors’

findings underscore that although it is important that students have substantial opportu-

nities to discuss mathematics, the quality and nature of these discussions may be a more

pivotal factor for influencing student learning.

A natural approach to improving the quality and nature of classroom discussions is

providing students opportunities to share their solutions. By sharing solutions, a student has

an opportunity to reflect on the thinking that led to her or his mathematical products. All

students in the class also have an opportunity to consider the presented solutions and how

they relate to their own approach and thinking. Yet, teachers often have difficulties en-

gaging students in productive conversations about students’ solutions and thinking. Several

researchers have found that although teachers may ask questions that elicit student solu-

tions, these same teachers struggle to pose questions that are attentive to or extend student

thinking and learning as the students share their solutions (Boaler and Brodie 2004; Brodie

2011; Franke et al. 1998; Franke et al. 2009; Walshaw and Anthony 2008). Teachers are

often told to ‘listen to your students,’ but how teachers listen to students and leverage the

knowledge acquired from listening is not as obvious to teachers; nor is it well articulated

by researchers. Should teachers listen for correct or incorrect answers? Should they listen

for student misconceptions? And how should teachers respond to their interpretations of

what they have heard? These fundamental questions have, in part, led mathematics

educators to analyze classroom discussions using discourse analysis.

Discourse analysis and a lens on student thinking

When analyzing the nature of classroom discussions, researchers have focused on various

aspects of discourse. For instance, researchers have examined discourse patterns to

2 We use the word educator to refer to teachers, teacher educators, mathematics educator-researchers, etc.
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describe ways that teachers interact with their students (e.g., univocal or dialogic; Mehan

1979; Sinclair and Coulthard 1975; Wertsch and Toma 1995). Other researchers have

analyzed discourse patterns to describe teacher talk and questioning (e.g., revoicing,

pressing, and follow-up; Boaler and Brodie 2004; Franke et al. 2011). Researchers have

also characterized discourse patterns by modeling desirable and undesirable behaviors of

teachers (e.g., focusing or funneling; Rittenhouse 1998; Wood 1998). These different

characterizations of discourse patterns in mathematics classrooms provide important in-

formation about student–teacher interactions. At the same time, and countering Hiebert and

Grouws’ (2007) call for more attention to student thinking, these discourse patterns

foreground teacher actions in ways that do not attend to the depth and content of student

responses and thinking, including what a teacher might understand about student thinking.

For example, revoicing is a teacher-centered activity only requiring a student to put forth

some statement to be revoiced; the mathematical nature of the student’s statement is

mostly irrelevant to the revoicing construct. Although funneling and focusing provide more

emphasis on the students’ participation and contributions, these characterizations fore-

ground teachers’ actions in ways that do not provide explanatory constructs for teachers’

decisions related to student thinking. In other words, these uses of discourse patterns

explain what teachers do, but they do not provide ways to characterize a teacher’s complex

mental processes that might lead to and inform what they do.

Maintaining a focus on teachers’ actions without giving attention to the mental pro-

cesses of teachers and students in relation to these actions is not likely to explain the

effectiveness of a teacher focusing on and using student thinking. Our research group’s

past work (Carlson et al. 2007), which examined the degree to which professional learning

community facilitators and teachers made sense of and leveraged their peers’ thinking, has

led us to believe that a similar lens may be useful for characterizing the quality of

classroom discussions. Our intention is not to imply that researchers have ignored these

aspects of classroom interactions. Rather, prior researchers have not provided explanations

for the ways of thinking that teachers might engage in when attempting to promote quality

discourse in their classrooms; nor has prior research set such explanations against the

backdrop of students’ mathematical thinking. As an example, discourse analysis research

(Boaler and Brodie 2004; Brodie 2004, 2011; Franke et al. 2011, 2009) has highlighted the

importance of teachers evaluating and following up on student responses. With regard to

this discourse practice, a focal question becomes: What is the nature of a teacher’s mental

actions that enables her or him to productively evaluate and follow up on student responses

in the moment of teaching? It could be the case that a teacher’s decisions rely on the

correctness of a student’s solution. Or, it could be the case that a teacher considers all

student solutions as stemming from viable3 (to the student) ways of thinking that the

teacher must discern through continued interaction. In the first case, a teacher’s questions

are likely to be for the purpose of determining whether students have the correct answer or

not, and then correcting the answer if the students do not have the correct answer. In the

latter case, a teacher’s questions are likely for the purpose of building a model of students’

thinking in order to account for how students reached their solution, a model that may or

may not inform the teacher’s subsequent interactions with her or his students.

3 By claiming a student’s strategy or solution stems from a viable way of thinking, we do not mean to imply
that a teacher should not evaluate student thinking as correct or incorrect. Instead, we intend to emphasize
that, regardless of correctness, a teacher should assume that the student has an understanding that makes
sense in that moment to the student.
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Decentering

The construct of decentering provides a powerful lens for examining student–teacher

interactions because it moves beyond discourse analysis by including a focus on the

teacher’s interpretations of students’ verbal and written explanations to make decisions in

the moment of teaching. While the products of discourse analysis provide information

about interaction patterns, including characterizations of the types of questions a teacher

poses in a lesson, these products do not provide information about the thinking a teacher

engages in when deciding what questions to pose, nor do these products provide infor-

mation set against the backdrop of student thinking. We seek to extend discourse analysis

by drawing inferences about how a teacher’s understanding of student thinking relates to

the teacher’s actions in the moment of teaching.

Smith and Stein (2011) alluded to the importance of being attentive to student thinking

when describing teachers’ uses of probing questions—those questions that require students

to expand on their response or explain their thinking in a different way. The authors

explained that, ‘‘most teachers find probing questions easy to use and typically will get the

hang of this style of questioning quickly’’ (p. 68). Stressing the importance of considering

teacher thinking, the authors continued, ‘‘…teachers need to learn how to discern when

this question type can be expected to pay dividends and when it cannot’’ (p. 68, emphasis

added). We conjecture that making such a judgment requires knowledge of the students’

thinking and an understanding of the mathematical ideas relevant to the discussion. We

approach the purpose and expectations of probing questions in terms of the teacher’s

ability to build a model of student thinking and effectively advance student thinking and

understanding.4 We believe the construct of decentering is useful for placing greater

emphasis on how student thinking (or a teacher’s interpretation of student thinking) in-

forms the teacher’s instructional moves and thinking. We hypothesize that posing probing

questions to a student is more effective when the questions are informed by the teacher’s

understanding of student thinking and mathematical ideas being discussed.

Piaget (1955) introduced the idea of decentering (or decentration) to characterize the

actions of an observer attempting to understand how an individual’s perspective differs

from her or his own. Piaget was mainly concerned with decentering in relation to a child’s

development, particularly in explaining a child’s transition from being egocentric and

unable to consider perspectives, thoughts, and feelings other than her or his immediate own

to when a child has the capacity to consider perspectives, thoughts, and feelings inde-

pendent of her or his immediate own (Chapman 1988; Piaget 1955; Piaget and Inhelder

1967). Piaget explained decentering both in terms of a child’s mathematical thoughts

(Chapman 1988; Piaget and Inhelder 1967) and in terms of a child’s interactions with

others (Piaget 1955). As a mathematical example, Piaget and Inhelder (1967) illustrated

that a child’s spatial reasoning transitions from being constrained to her or his own visual

perspective to being able to imagine visual perspectives from positions other than the one

he or she was occupying. With respect to interactions, Piaget (1955) discussed the depth at

which those involved in interactions consider those understandings and perspectives that

are not their own. When speaking of children, he explained:

4 Adopting a radical constructivist (von Glasersfeld 1995) standpoint, we consider an individual’s thinking
to be fundamentally unknowable to any other individual. We use ‘‘build a model of student’s thinking’’ to
refer to when an individual attempts to develop a model of another individual’s mental actions that may
explain that individual’s observable and audible actions.
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If children fail to understand one another, it is because they think they do understand

one another. The explainer believes from the start that the reproducer will grasp

everything, will almost know beforehand all that should be known, and will interpret

every subtlety. (p. 116, emphasis added)

Steffe and Thompson (2000) extended the construct of decentering to classify hypothetical

interactions between teacher and student, specifically discussing decentering in terms of

the manner by which an individual adjusts (or does not adjust) his or her actions in order to

understand another individual’s (or a group of individuals’) thinking. Incorporating a focus

on both social interactions and mathematical thinking, Steffe and Thompson (2000) and

Thompson (2000) distinguished between two primary ways in which individuals interact

with each other. They related these distinctions to the type of models that an individual

(implicitly or explicitly) creates of another’s thinking.

Thompson (2000) differentiated individuals participating in an interaction unreflectively

from those individuals participating in an interaction reflectively with respect to other

individuals’ contributions. In the context of teaching, Thompson conveyed that, ‘‘If

teachers do not reflect on aspects of an interaction that are contributed by students, if they

are fused with the situation as they have constituted it’’ (2000, p. 423), then the teacher is

constrained to (consciously or sub-consciously) creating first-order models of the inter-

action. First-order models are, ‘‘the models an individual constructs to organize, com-

prehend and control his or her experience, i.e., their own mathematical knowledge’’ (Steffe

and Olive 2010, p. 16, emphasis added), which differ from those models that stem from an

individual interacting reflectively in a conscious attempt to set aside one’s own thinking

and understand what other individuals understand (e.g., decentering). A focus on one’s

own experience can be a by-product of the individual assuming that the other’s thinking is

identical to her or his own, thus speaking such that he or she believes the other individual

understands the utterances just as intended. Or, an individual operating entirely from the

perspective of her or his experience may presume that another’s thinking has a rationality

of its own, but the individual makes no concerted attempt to differentiate her or his own

thinking from the other’s thinking, thus interacting in an unreflective way.

As defined by Thompson (2000), an individual who interacts reflectively, makes a

conscious effort to understand how other individuals might be thinking, constructs second-

order models with respect to the interaction. Second-order models are, ‘‘[the models]

observers may construct of the subject’s knowledge in order to explain their observations

(i.e., their experience) of the subject’s states and activities’’ (Steffe et al. 1983, p. xvi).

Because second-order models are ‘‘constructed through interaction with the subject… they

are the observer’s models of the observed…to explain the mathematical knowledge and

learning of children as understood by the observer’’ (Steffe and Thompson 2000, p. 205),

we contend that the act of decentering—attempting to adopt a perspective that is not one’s

own—is essential to the construction of sophisticated second-order models.

Speaking in more detail on differences between first- and second-order models, Steffe

and Thompson (2000) and Thompson (2000) explained that an individual who creates a

first-order model ‘‘does not intentionally analyze the mental structures of a child relative to

his or her own mental structures’’ (Steffe and Thompson 2000, p. 202). In contrast, an

individual who interacts with others by attempting to put aside her or his own ways of

operating in order to construct an image of the other participant’s ways of operating creates

a second-order model. This individual might also attempt to construct an image of, ‘‘what

they [the observer] understand about what the other person could understand’’ (Thompson

2000, p. 423, emphasis added) including the ‘‘ramifications of positing alternative ways of
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thinking that might prove more profitable were students to think in those ways’’

(Thompson 2000, p. 424). As Silverman and Thompson (2008) described, it is through an

individual constructing second-order models of her or his students’ thinking, including the

ramifications of those and alternative ways of thinking, that personal meanings can be

transformed into sophisticated mathematical knowledge for teaching. Whereas first-order

models allow the individual to characterize students’ current state of understanding, sec-

ond-order models require that the individual also construct an image of alternative student

ways of thinking and how students might develop these ways of thinking given their

current state of understanding.

Returning to student–teacher interactions, teachers who are oriented to decenter un-

derstand that their students have idiosyncratic understandings; therefore, the teacher at-

tempts to gain insights into the thinking of her or his students by interacting reflectively

with students. These insights may be gained by listening to the student when responding

directly to the teacher or another student, and the teacher might subsequently use her or his

evolving second-order models to determine what questions to pose or statements to make

as he or she works to further understand and advance student learning. We note that a

decentering teacher always assumes that a student has some viable system of meanings that

contribute to her or his actions. For this reason, notions of incorrect and correct are mostly

irrelevant beyond informing the teacher’s future actions. This can be summarized by the

following statement: There are no such things as misconceptions, ‘‘misconceptions are just

conceptions that, for a variety of possible reasons, you do not want the other individual to

hold’’ (Patrick W. Thompson, personal communication). In other words, misconceptions

are judgments an observer makes (and possibly acts on) relative to her or his constructed

second-order models, but the observer views these misconceptions as viable conceptions to

the student.

The following examples contrast two teacher–student interactions to demonstrate

teachers attending to student thinking and building what we classify as first- or second-

order models of students’ thinking. Consider the problem in which a class is tasked with

determining the measure of an angle that subtends an arc length of 7 inches on a circle with

a radius of 3.5 inches.

Interaction 1 (interacting unreflectively—building a first-order model):

Teacher: Ok, who wants to give an answer?

John: 7 divided by 2 pi times 3.5 equals x over 360 and I got x to be 114.6.

Teacher: Great, and how do you know that works?

John: It’s a proportion.

Teacher: Good, a proportion. Katie, you solved it a different way. What did you do?

Katie: I divided 7 by 3.5 and got 2 radians.

Teacher: And that’s the same as 114.6 degrees, right?

Katie: Yes.

Teacher: Good.

Interaction 2 (interacting reflectively—building a second-order model):

Teacher: Ok, who wants to give an answer?

John: 7 divided by 2 pi times 3.5 equals x over 360 and I got x to be 114.6.

Teacher: Great, and how do you know that works?

John: It’s a proportion.

Teacher: A proportion, OK. Can you say a little more about that?

Decentering: a construct to analyze and explain teacher…
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John: Well, like, if we divided 7 by 2 pi times 3.5, we get about 0.32. So that times

360 gives me the answer.

Teacher: Yes, that does give an answer. Back to the 0.32, what does that number mean

and why does multiplying that by 360 give us the answer?

John: The arc length is 32 % of the circle’s circumference, so the angle measure

should be 32 % of 360 degrees because this corresponds to a circle’s

circumference.

Teacher: Good. Katie, I see that you solved it a different way. What did you do?

Katie: I divided 7 by 3.5 and got 2 radians.

Teacher: And why does that work?

Katie: Well, radians tell me how many radii are cut off by the angle, and 7 divided by

3.5 tells me that the arc length is 2 times as large as it.

Teacher: And what do you mean by ‘it’?

Katie: The arc length is 2 times as large as the radius.

Teacher: OK. Now, John and Katie came up with different numbers for their answers

using different calculations. How can we connect both of these answers to

John’s idea of proportion?

Dave: 114.6 degrees is the same as 2 radians.

Teacher: What do you mean by the same? Does 114.6 equal 2?

Dave: They both equal the same percentage of the total, 2 divided by 2 pi is the same

as 114.6 divided by 360.

Teacher: OK. What do you think about that John? Does that fit with what you said?

John: That’s like my solution. It’s always 32 % of the circle’s circumference. No

matter if it’s radians, degrees, or inches.

In the first interaction, the teacher questioned his students; however, the students’

reasoning and meanings that led to their answers are left unclear. The teacher’s responses

suggest that he is focused on key phrases or procedures that led students to the correct

answer—the teacher is acting unreflectively. For instance, John mentions that he used a

‘‘proportion,’’ but his meaning of the word proportion, or how he used a proportion is not

clear. As research in the area has revealed (Lamon 2005; Thompson and Saldanha 2003),

students can hold numerous meanings for ‘‘proportion,’’ many of which are limited to a

procedural execution of calculations. Also, students shared two different solutions, yet the

teacher did not follow up on either student response in a way that drew their meanings to

the surface or helped students connect the two ways of thinking about angle measure and

how they are related to the arc length and the radius. As a result, in some students’ minds,

there could be two different answers to this question—114.6 degrees and 2 radians—that

have only superficial connections (Carlson et al. 2013; Moore 2013). Thus, while the

teacher did ask questions, we do not interpret the teacher to be interacting reflectively in an

attempt to decenter, thus constraining the teacher to what we consider to be a first-order

model of student thinking that did not assist him in revealing student understanding.

In the second interaction, we interpret the teacher to be interacting reflectively, thus

creating a second-order model of her students’ thinking. She then uses that model to help

her students connect two different numerical answers for an equivalent measure of an

angle’s openness. The teacher’s prompt to have John explain what he meant by ‘‘pro-

portion’’ initiated a question–response sequence that offered insights into the students’

meanings for angle measure, particularly in terms of relationships between a circle’s

radius, circumference, and subtended arc length. This understanding of her students’

thinking enabled the teacher to build on and extend students’ thinking in a way that
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prompted students to draw connections among their different ways of thinking for angle

measure. An observer can only infer the thinking behind the teacher’s questioning, but one

explanation for the teacher’s actions is that her initial question was intended to build a

second-order model of how John was thinking and understanding ‘‘proportion.’’ Sup-

porting this interpretation, when John provided a calculational response to the teacher’s

question, she followed up with a second question (‘‘Back to the 0.32, what does that

number mean and why does multiplying that by 360 give us the answer?’’) directed at

revealing John’s thinking. As a result, John raised the idea of proportion as a multiplicative

comparison between quantities. The teacher was subsequently able to use her second-order

model of John’s thinking to raise the critical idea that an angle measure quantifies the

fractional amount of a circle’s circumference subtended by the angle. Collectively, by

reflecting on the students’ responses and building second-order models of their thinking,

the teacher was able to pose questions to help students see that Katie’s and John’s solutions

represented two different correct ways of representing an angle’s measure.

Although the decentering construct has rarely been used explicitly in research to ana-

lyze student–teacher interactions within a classroom, there are several frameworks and

constructs related to decentering. One relevant example is that of professional noticing

(Jacobs et al. 2010), which refers to teachers reflecting on student strategies that emerged

during videotaped lessons, interpreting student understanding by analyzing student written

work, and thinking about how to respond to student understanding in the hypothetical

situation of working with the students in a classroom. Jacobs et al. described, ‘‘…attending,

interpreting, and deciding how to respond—happen in the background, almost simulta-

neously, as if constituting a single, integrated teaching move’’ (p. 173). We agree that the

collective constructs of professional noticing are best approached as an integrated teaching

move, and we contend that a teacher’s decentering actions play an important role in such a

move and that this move is not necessarily in the background to the teacher, particularly in

cases when students’ understandings are not a transparent feature of their activity. Whereas

Jacobs and colleagues were primarily interested in what teachers noticed when watching a

videotaped lesson and how teachers interpreted student written work, the construct of

decentering offers a novel perspective that focuses on what is being built in the teacher’s

mind, particularly in the moment of teaching. When decentering, the teacher is attempting

to take on the perspective of the student through interacting reflectively in the moment of

teaching for the purpose of building second-order models of her or his students’ thinking

relative to a specific mathematical idea. This activity enables the teacher to pose questions

intended to help students make essential connections related to learning a concept.

Another relevant framework related to decentering is teacher follow-up (Franke et al.

2011). Franke et al. specifically analyzed student–teacher interactions in elementary

classrooms to determine how teacher follow up on student explanations differed across

teachers and student achievement. The authors found, ‘‘it was how they used these moves

in relation to the students and the mathematics that seems to support students to provide

more explanation, take an incorrect explanation to correct, or an explanation from in-

complete to complete’’ (p. 6). The authors characterized teacher actions that promoted a

complete and correct explanation as, ‘‘connecting with students’ mathematical ideas and

pressing students to detail their ideas for themselves and the class’’ (p. 12). As with much

of the discourse literature, this framework is focused on the way in which teachers respond

to students (e.g., what teachers do), but not on the reflective, nuanced model building that a

teacher must mentally engage into connect with students’ ideas and productively use these

ideas in interactions. Teacher follow-up on students’ explanations is certainly important,

and hence, our goal is to better understand and then characterize what the teacher
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constructs in her or his mind and to illustrate the subtle ways in which the teacher’s model

of students’ thinking influences the quality of the teacher’s questions and various in-

structional decisions made during teaching.

Background

Project Pathways is a National Science Foundation Math and Science Partnership (MSP)

project (No. EHR-0412537) designed to support secondary mathematics teachers improving

their instruction and students’ learning. Early in the project, we identified state assessments,

teacher knowledge, and school leaders as obstacles for teachers in shifting their teaching to

be more inquiry based and conceptually focused (Moore and Carlson 2012). After con-

fronting these obstacles in select schools, teachers continued to make minor shifts in their

teaching, with our continuing to measure only minimal gains in student learning. This led to

our piloting a research-based conceptually focused precalculus curriculum in select class-

rooms. We refer to these materials as the Pathways curriculum (Moore 2013).

The Pathways curriculum is informed by theory on learning the concept of function

(Carlson 1995, 1998), the processes of covariational reasoning (Carlson et al. 2002), and

literature about mathematical discourse (Carlson et al. 2007; Clark et al. 2008) and problem-

solving (Carlson and Bloom 2005). The curriculum contains modules based on research of

student understanding and learning of key concepts of precalculus, including proportion, rate

of change, function, function composition, and has a focus on using these ideas to represent

how two quantities change together to represent exponential, polynomial, and periodic

growth patterns. The curriculum also supports a problem-solving approach to mathematics,

where students are expected to apply quantitative reasoning (Carlson et al. 2012; Moore and

Carlson 2012) to construct images of applied problems, and developmeaningful formulas and

graphs to characterize how quantities in a situation are related and change together.

Selecting and analyzing student–teacher interactions

As part of the project, we videotaped and observed secondary mathematics teachers who

used the Pathways curriculum during the school year. Research team members who ob-

served lessons took field notes and answered questions for teachers after their lessons.

After observing classrooms with different teachers and working with these teachers over

the course of 1 year, we noticed a substantial shift in how one teacher, Claudia, was

effectively using student thinking in her classroom. Thus, we decided to analyze her

student–teacher interactions (i.e., a sustained conversation between the teacher and a

student or group of students) over the course of the year to better understand how she was

thinking and what led to her posing questions that were highly effective in advancing her

students’ thinking and understanding of the key course ideas.

Using conceptual analysis techniques (Steffe and Thompson 2000; Thompson 2008),

we analyzed the student–teacher interactions by first characterizing the students’ mathe-

matical thinking during an interaction. This involved attempting to discern students’ ways

of thinking by examining their utterances and written work (e.g., we developed, to the best

of our ability, second-order models of the students’ thinking). We then examined Claudia’s

utterances and written work to characterize her mathematical thinking including whether

she built a first- or second-order model of her students’ thinking. With specific interactions

analyzed, we then compared and contrasted these interactions to further characterize
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student thinking, teacher thinking, and the degree to which we inferred that Claudia in-

teracted reflectively for the purpose of building second-order models of student thinking.

Analyzing across interactions enabled us to identify shifts in student thinking as well as

shifts in Claudia’s decentering. For instance, at times it was difficult to discern whether or

not Claudia developed a second-order model during an interaction where it was apparent

(from our perspective) that she held different ways of thinking than her students. Com-

paring the broader set of interactions enabled us to determine whether Claudia later en-

gaged with that group (either during group work or during whole class discussion) in a way

that implied she had developed a second-order model of students’ thinking or at least

acknowledged that their thinking was not identical to her own. For the purpose of this

article, we select two representative student–teacher interactions from Claudia’s Pathways

high school precalculus course to illustrate the nature of interactions that emerged when

she attempts (or does not attempt) to build a second-order model of student thinking (i.e.,

decenter).5

Illustrations of classroom interactions

The mathematical lens by which we observed and analyzed the interactions is related to the

Pathways curriculum learning goals and instructional practices. Therefore, we begin each

illustration by discussing the instructional activity and learning goals as described in the

Pathways curriculum. We then discuss the interactions in terms of the teacher’s decen-

tering actions (or lack thereof) for the purpose of building and leveraging a second-order

model of student thinking.

Illustration 1

Our first illustration is an interaction from Claudia’s classroom at the beginning of the

school year. The initial Pathways unit introduces the idea of constant rate of change by

prompting students to explore how two quantities change together in situations where the

two quantities are changing together at a constant rate of change. The lessons support

students in understanding the meaning of constant rate of change—that is, two quantities

are changing together at a constant rate of change when the changes in the two quantities

are proportional. The idea of average rate of change of one quantity with respect to another

(e.g., distance with respect to time) follows by prompting students to explore the meaning

of average rate of change in a context where a car moves from point A to point B at a

varying rate of change. Students are supported in understanding that the average rate of

change over that time interval is the constant speed the car would need to travel to achieve

the same change in distance over the same interval of time that the car actually traveled as

it moved from point A to point B. As an example, an average speed of 34 mph of an object

as it travels from point A to point B is the constant speed required to travel from point A to

point B in the same amount of time as it actually took the object to move from point A to

point B. At this point in the class, students were given the diver task (Fig. 1) to address a

common way of thinking about average rate of change that can be problematic—that is, the

5 We are not attempting to characterize a teacher as being a decentered or non-decentered teacher, but rather
we are attempting to illustrate how decentering allows the teacher to build a second-order model of student
thinking, which can inform the teacher’s decisions.
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idea that the average rate of change of one quantity with respect to another is the arithmetic

mean of instantaneous rates of change.

When approaching the diver task, students initially determine the average score for the

diver based on four judges’ scores using the calculation for determining the arithmetic

mean of summing the scores and dividing by the total number of scores. The students are

asked to explain the meaning of this number. For teachers to build a second-order model of

student thinking that they can use to work toward the instructional goals for this task, they

must be knowledgeable of the different meanings associated with the word average and

how these meanings are connected to the calculation for determining an average. It is

common for students to think of the average as the middle of the data set. Students may

also describe average as some estimate of the entire data set, which is most consistent with

the arithmetic mean. In such a case, the teacher must be prepared to assist students in

investigating how to quantify and interpret this meaning for average (e.g., it is the score

that the diver would receive had all four judges awarded the diver the same score).

Analysis of the student–teacher interaction during the diver task revealed that students

determined the average score (or arithmetic mean) of the diver based on the four scores

given by the judges. While circulating around the classroom, Claudia stopped to discuss

part b of the task (see Fig. 1) with a group of students (Excerpt 1).

The students attempted to verbalize two ideas. In line 5, Student 1 briefly related the

meaning of 8.55 to some idea of ‘constant.’ In lines 6, 7, 9, 11, and 14, the students referred

to the average as the ‘approximate score’ that the judges awarded the diver, with one

student mentioning the idea of ‘mean.’ We also observed that Claudia’s first move was to

ask her students to describe their response to the task. After prompting the students to

continue their discussion (lines 4 and 8) and telling a student to not use ‘mean,’ she

questioned the students on particular aspects of the situation (e.g., the number of judges

and dives). Although Claudia asked her students questions related to the task, we interpret

her actions to suggest that she was focused on the procedure for finding average and she

interpreted the students’ actions (i.e., what they did) with respect to this focus, as opposed

to participating reflectively in an attempt to gain insights into how the students thought

about their activity. That is, Claudia was oriented to her first-order model of the mathe-

matical ideas and instructional goals.

Our analysis of the entire class session revealed that Claudia did not return to ideas of

approximate score, constant rate of change, average, or mean. Considering that the purpose

of the lesson was to explore connections between various meanings of the average, Excerpt

1 (and the subsequent interactions) does not provide sufficient evidence that Claudia was

acting reflectively for the purpose of understanding her students’ thinking (i.e.,

1. In a diving competition, a diver received the following scores from 4 judges after making 

a dive. 

Judge 1 Judge 2 Judge 3 Judge 4

8.7 9.3 8.0 8.2

a. Determine the diver’s average score for the four dives.

b. What is the meaning of average in the context of computing a diver’s average score 

for a dive?

c. How does the meaning of the word average when computing a diver’s average score 

compare with the meaning of the word average when computing a diver’s average 

speed?

Fig. 1 Average score for a diver task (Carlson and Oehrtman 2010)
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decentering). That is, we consider Claudia’s actions to not be indicative of her reflectively

trying to build a second-order model of the students’ meanings for ‘mean,’ ‘constant,’ or

‘approximate score’ independent of her own understanding of these ideas and her in-

structional goals.

There are several explanations for Claudia’s actions in Excerpt 1. First, she may have

assumed that the students held particular ways of thinking when they used the words

‘approximate’ or ‘constant’ score and moved forward with these presumed ways of

thinking. Second, she may not have understood the underlying mathematical ideas of the

lesson; therefore, she was unsure which direction to take her questioning or how the

students’ utterances might have related to the lesson goals. Third, she may not have

understood her students’ explanations, and instead of continuing to question the students to

Excerpt 1 Average, Mean and Approximate Scores

Line
number

Speaker Transcription

1 S1 (walking up to the group) Do you know the meaning of average in this problem?

2 T Tell me what you have so far.

3 S2 If the average is 8.55…a

4 T Okay, so…

5 S1 I said that 8.55 would mean average would be like the constant or the, I don’t want
to say constant.

6 S2 You said approximate.

7 S1 The approximate score.

8 T Keep going.

9 S3 Can we use mean to describe average?

10 T No. (laughs)

11 S1 The approximate score to get your score.

12 S4 No, cause…

13 T Your…

14 S4 …the approximate score given by the judges for that dive…

15 T Keep going, the approximate score by the judges, what

16 S4 …for the dive.

17 T Okay, for what dive?

18 S2 For the diver’s dive.

19 T For just one dive?

20 S Yeah (students in unison).

21 S2 They only did one dive.

22 S1 If each, if one judge per dive or isn’t it…

23 T Four judges for the one dive, okay, alright. Okay so tell me again what you said.

24 S4 The approximate score given by the judges for the one dive.

25 T Okay, by which judges?

26 S1 By the four judges.

27 T By what?

28 S2 By the four judges.

29 T (shaking her head confirming the student’s answer and leaving the group)

a The ellipsis represent when the speaker is interpreted by another speaker
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discern their thinking, she redirected the conversation in ways focused on her own un-

derstanding. As a result of one or more of these reasons, Claudia’s questions limited the

potential for the students to explore relationships and differences between their ideas.

Illustration 2

Our second illustration draws on an interaction from Claudia’s classroom near the be-

ginning of a unit focused on quantitative relationships and representing these relationships

with formulas, graphs, and tables. Collectively, the lessons support students in under-

standing how different representations (e.g., formulas, graphs, and tables) are connected

and how to obtain information about the problem situation using each representation. As

part of the unit, students were given different situations and prompted to represent the

given information using formulas, graphs, and tables in order to make predictions about the

situations. We draw on the hotel renovation task in which students were to determine the

cost of adding a number of rooms for a hotel renovation given a fixed cost to build six

additional rooms (Table 1). As part of this task, students were to sketch a graph to rep-

resent the relationship between the number of rooms that can be rented in terms of the

amount of money spent on renovating.

The hotel renovation task was designed with the intention that students use their

knowledge from the first unit that if the changes in two quantities are proportional (e.g.,

Dy = m � Dx), then those quantities model a linear relationship. That is, the students were

to use the information that for every $5550 the hotel spent on renovation costs, they could

rent an additional six rooms to conclude that the situation can be modeled using an

increasing, continuous linear relationship with a rate of change of 5550/6 and an initial

point of (0, 28). From there, the students were expected to determine other coordinate pairs

by reasoning about changes in the quantities (e.g., a change in the renovation cost of $5550

yields a change in the number of rented rooms of six; hence, the coordinate pair (5550, 34)

satisfies the linear relationship).

While we expected Claudia to draw on her knowledge of rate of change and linear

relationships to support the students in reaching the above conclusions, analysis of the

student–teacher interactions during the hotel renovation task revealed that she had not

anticipated the reasoning expressed by some students. This is revealed when Claudia

circulates around the classroom monitoring student progress and stopped at one group to

question the students’ construction of a step-function graph (Fig. 2). The interaction

(Excerpts 2a, 2b) reveals the varying degree of which Claudia acted reflectively in an

attempt to build a second-order model of the students’ thinking.

The students created a step function to model how the number of rooms rented changed

with the amount of money spent on renovations (lines 2, 12, 19, and 24). Student 1

provided a valid explanation for why she chose to use a step function as opposed to a

continuous linear function: ‘‘if I spend half of the money on the renovation you cannot

have� a room so the rooms must increase by one’’ (line 2). That is, the students conceived

that the number of rooms rented could only change in discrete amounts. Thus, any spent

Table 1 Hotel renovation task (Carlson and Oehrtman 2010)

A local hotel currently rents an average of 28 rooms per night. The hotel management estimates that for
every $5550 spent on hotel renovations, they will be able to rent an additional 6 rooms each night. Sketch
a graph that represents the relationship between the number of rooms that can be rented in terms of the
amount of money spent on renovations
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amount less than that required for one room does not result in an additional room (or partial

room). However, this was not the graph that Claudia was expecting, nor was it how she

interpreted the situation and the students’ equation.

An important facet of this interaction is that the students maintained a focus on their

graph and how a step function was the appropriate model for the situation. In fact, Student

1 acknowledged her difficulty with writing a formula for a step function (line 4) and

understood that the group’s formula, which was written in the form of a continuous linear

function, did not match their graph or conception of the situation. Despite the students’

focus on their graph and their admitting that the formula did not model the situation as they

had conceived, Claudia repeatedly returned the students to their formula (lines 3, 5, 7, and

13). Claudia’s questions suggest that she expected them to conclude that the situation was

modeled by a continuous linear function, which was compatible with her interpretation of

the task situation and the students’ formula. As the students maintained their conception of

the situation, as opposed to adopting Claudia’s perspective, Claudia questioned them about

changes in the two quantities apparently for the purpose of concluding that because the

changes in the quantities were proportional, the relationship was linear (lines 15, 17, 20,

25). Claudia’s questioning about changes suggests that she did not have a well-developed

second-order model of how her students were thinking; she did not realize there was not a

conflict between how the students and she envisioned the changes for a change of one room

(lines 15–16). Hence, her questioning did not address the conflict between how she and the

students envisioned the situation with respect to a partial renovation payment and the

number of rooms rented.

We note that Claudia was attentive to the students’ work, at least to the extent that she

realized the students’ solution was inconsistent with her first-order model. For instance, in

line 9, she attempts to interpret Student 1’s claims (line 2). Additionally, Claudia asked a

question that may have helped her build a second-order model of how the students were

thinking when she asked, ‘‘…according to her equation, you can pay for one room at a

time, right’’ (line 13)? Yet, we interpret Excerpt 2a to suggest that Claudia was not acting

Fig. 2 Students’ graph of the
hotel problem
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reflectively with respect to how the students were thinking, independent of her interpre-

tation of the situation, her instructional goals, and her interpretation of the students’

products. Hence, Claudia was operating from a first-order model of her students’ thinking.

She primarily focused on how she could use the students’ formula to guide them to the

thinking and conclusion that she was expecting, which led to her making inferences and

decisions that were not compatible with or attentive to (from our perspective) the students’

thinking.

By the completion of Excerpt 2a, Claudia and her students’ conceptions of the situation

remained in conflict (from our perspective and apparently the students’ perspective). While

Claudia continued attempting to impose a particular way of thinking based on her

Excerpt 2a Linear or Proportional?

Line
number

Speaker Transcription

1 T (Walks up to group and looks at students’ work for a few seconds) Okay, so tell me

what your graph (Fig. 2) means?

2 S1 Because if I rent � a room, even if you spend � the extra 5500 dollars (cost per six
rooms), you can’t have � room so it would increase by 1.

3 T (Pause) Okay, but according to your equation, well actually where is your equation?

4 S1 It is right here, I know I have problems writing stepwise equations.

5 T Okay, so is this (points to student’s formula) a step function?

6 S1 (begins to erase her graph)

7 T Don’t erase your graph, no this is not a step function right here (pointing to a

formula), this is what kind?

8 S1 It is just two equations (referring to same formula).

9 T Okay, so let’s go back here, so if they spend, uh, so you are saying if they spend

anywhere between 5550 up to 11,100, but not including 11,100 but anything up to

that, then they are only going to get…

10 S1 I am sorry this is wrong, this should be up here.

11 T Okay, so let’s well it should be at…

12 S2 But if she is graphing the situation then it would be stepwise.

13 T Okay, but her, according to her equation, you can pay for one room at a time, right?

14 S1 Yes.

15 T So if you can pay for one room at a time that would mean, as soon as you pay the

next 925 dollars (cost per one room) you would get an additional room. Right?

16 S1 Correct.

17 T Okay, what kind of relationship is that?

18 S1 (thinking)

19 S2 Step function.

20 T No. (Laughing)

21 S2 It is not proportional.

22 S1 It is not proportional and it is not linear because…

23 T Okay, why is it not proportional?

24 S1 Because you start at 28 (number of rooms), and you can’t spend negative money on
the next room.

25 T Are the changes proportional though?

26 S1 No.
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understanding of the situation and the instructional goals of the lesson provided in the

curriculum, as opposed to trying to understand and adopt the perspective of the students,

the students persisted in maintaining their conception of the situation (Excerpt 2b).

In an attempt to clarify their reasoning to Claudia, the students used a fruit analogy,

claiming that it was possible to have � of a piece of fruit, but in the situation of hotel

rooms it was not possible to have half a room (line 4). It was at this point in the interaction

that Claudia’s actions shifted in focus. In line 5 of Excerpt 2b, Claudia changed her focus

by asking a question related to the students’ graph and understanding of the situation.

Claudia continued asking questions that we interpreted to be for the purpose of under-

standing how the students conceived the situation and graph. That is, Claudia appears to be

reflectively considering the students’ activity and thinking, as opposed to questioning the

students for the purpose of guiding them to a specific understanding based on her own

understanding and goals. Hence, we infer that Claudia’s questions (lines 7, 9, 12, and 14)

and the student responses led her to build a second-order model of how the students

thought about the situation (lines 11 and 12). As Claudia questioned and listened to her

students, she discovered that although her students were not thinking about the situation in

a way that was compatible with her initial conception of the situation, they were thinking

Excerpt 2b Piecewise and adding rooms

Line
number

Speaker Transcription

1 T So for each additional room built are they always going to pay nine hundred?

2 S1 I don’t know, we are trying to think about how to describe this.

3 S2 Well you presume, because they’re not only going to build half a room.

4 S1 If for every apple you need one orange and you have half an apple then you need half
an orange, but this is not the case here because you spend half the money here you
are still going to get one, or you can’t spend half the money here.

5 T Okay, are you assuming that you have to spend the 5550 dollars (amount per 6
rooms) in your graph, is that what you are assuming?

6 S1 Yes, oh I am sorry, this is all wrong anyways, this should be, I am sorry this should
all be in 925 s (price per one room), I am making errors all over this paper
(explaining the increments on the stepwise graph should be 925)…

7 T Okay, but this graph is saying that if I spend less than 925 dollars I am still getting a

room, is that true?

8 S1 No this is starting at 28 so you are not adding your room yet until you spend 925
dollars at which point you get the 29th room.

9 T Okay, but this is saying that according to this graph if I am spending this much

money, which let’s say that it is four something whatever it is, that I am getting this

room. Is that true?

10 S1 But you already have that room because this is the 28th room that you already had in
the problem.

11 T Okay, so go to this one—oh, oh oh I see what you are saying. So this…

12 T So if you are paying this much money (pointing to a point on the student’s graph)
you still don’t have the next room?

13 S1 Yep.

14 T So once you pay 925 dollars you have the next room?

15 S1 You get the 29th room.

16 T Okay, so it doesn’t matter how much money you pay after that until you get to 925

dollars you’re paying this amount, okay I see what you are doing.
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about the problem in a viable way (line 16). Although not included in this excerpt, and

adding further evidence that Claudia constructed a second-order model of her students’

thinking, Claudia later had these students present their solution, the step function, to the

whole class and she facilitated a class discussion about their thinking and the feasibility of

their representation in relation to the continuous, linear representation.

We conjecture that Claudia’s interest in how her students thought about the situation

assisted her in decentering, which allowed her to listen and build a second-order model of the

students’ thinking about the situation in a viable and different way then she had anticipated.

This illustration exemplifies the importance of approaching student thinking as viable and

seeking to understand students’ ways of thinking. The task was intended to focus on linear

functions in terms of how changes in quantities are proportional. However, as seen in Il-

lustration 2, these students determined a more viable way of thinking about the situation:

‘‘because they’re not only going to build half a room.’’ One can imagine that, had Claudia not

acted reflectively in order to understand the meanings her students had constructed, the

students would have been left perplexed as to why a continuous function was used in a non-

continuous situation. Instead, the students’ success in conveying their meanings to Claudia

led to her subsequently having them present their way of thinking to the class.6

Discussion

Returning to Piaget’s (1955) explanation of decentering, and specifically his explanation of

someone interacting in a way that does not account for another’s perspective, he stated: ‘‘the

explainer believes from the start that the reproducer will grasp everything, will almost know

beforehand all that should be known, and will interpret every subtlety’’ (p. 116). Reframing

this in terms of teaching, a teacher (consciously or sub-consciously) not oriented to engage in

decentering acts from the start as if he or she will grasp everything his or her students do, will

know beforehand all that should be known, and will interpret every subtlety with ease.

Likewise, he or she acts in ways that assume his or her students interpret all explanations and

actions just as intended. On the other hand, teachers oriented to decenter appreciate the

instructional power gained by considering and attempting to make sense of student thinking.

These teachers are more likely to build and leverage second-order models of their students’

thinking when teaching, thus understanding that they do not know beforehand almost all that

should be known, especially relative to subtleties in their students’ thinking including their

students’ interpretations of the teacher’s actions.

Based on our research, we claim that further exploration of the role of decentering in

teaching is important. More specifically, we hypothesize that a teacher’s ability and

propensity to build a second-order model of her or his students’ thinking in the moment of

teaching is connected to the quality and nature of her or his classroom interactions, as well

as the development and enactment of her or his mathematical knowledge for teaching. In

this section, we outline connections in these areas.

Professional noticing, follow-up, and in-the-moment interactions

We find the decentering construct useful in extending discourse constructs including pro-

fessional noticing (Jacobs et al. 2010) and teacher follow-up (Franke et al. 2011) for two

6 As a result of this interaction, the curriculum developers removed the hotel renovation task from the linear
functions module, as the task was more appropriately suited for exploring piecewise functions.
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primary reasons. First, decentering enables situating teachers’ actions within a psychological

perspective, which has more explanatory power when attempting to characterize student–

teacher interactions. Not only does the decentering construct support a focus on the nuances

of student thinking as Hiebert and Grouws (2007) called for, investigating teachers’ decen-

tering actions also entails researchers developing hypotheses about teachers’ thinking as

teachers interact with students, including the depth at which teachers understand their stu-

dents’ thinking. For this reason, the decentering construct provides a way to distinguish

between different ways that teachers follow up on student explanations; decentering allows

more detailed cognitive accounts of how teachers ‘‘[connect] with students’ mathematical

ideas and [press] students to detail their ideas for themselves and the class’’ (Franke et al.

2011, p. 12). In some cases, teachers may not engage in decentering, thus not reflectively

considering students’ mathematical ideas. In other cases, teachers may decenter by reflec-

tively considering and connecting with students’ mathematical ideas. In the former cases, a

teacher might press her or his students for explanations, but the teacher’s actions are likely

focused on students’ procedures and actions (i.e., Excerpt 1) as related to the teacher’s

instructional goals and thinking (i.e., Excerpt 2a). In the latter cases, a teacher presses her or

his students so that he or she understands the students’ thinking behind the procedures,

actions, and solutions (i.e., Excerpt 2b). Such pressing enables a teacher to develop second-

order models of her or his students’ thinking and then make decisions based on these models,

instructional goals, and the teacher’s thinking.

A second way that decentering contributes to existing discourse literature is by ad-

dressing professional noticing in the moment of a teacher interacting with students in the

classroom. Jacobs et al. (2010) suggested that future studies should, ‘‘…connect teachers’

professional noticing of children’s mathematical thinking with the execution of their in-

the-moment responses’’ (p. 197, emphasis added). We argue that the decentering construct

extends professional noticing to interactions in the moment of teaching including how

professional noticing relates to the extent that teachers make intentional efforts to take on

the perspective of students. When teachers are decentering during interactions with stu-

dents, they are attending to, interpreting, and responding to student thinking in the moment

of teaching. More specifically, teachers are attending to and interpreting student thinking in

a way that enables them to be sensitive to their students’ perspectives. As a result, teachers’

decisions of how to respond to student thinking can be based on students’ ways of thinking

rather the teachers’ ways of thinking. Hence, we consider teachers’ decentering actions—

their building second-order models of how students are thinking during their interactions

with students—as a productive way to envision the in-the-moment execution of profes-

sional noticing in the classroom. Returning to Illustration 2, if Claudia had not attempted to

adopt the perspective of her students, she would not have attended to and interpreted her

students’ thinking in ways compatible with how they were thinking about the situation, nor

would she have been in position to productively leverage her students’ way of thinking.

We emphasize the implications of decentering with respect to investigating teachers’

actions, including their professional noticing, in the moment of teaching. Focusing on stu-

dent–teacher interactions in the moment of teaching is most germane to investigating a

teacher’s decentering actions and the extent that he or she builds second-order models of

student thinking. The models of student thinking that result from decentering are based on a

teacher’s interpretations of students’ ways of thinking, and teachers are best placed to take on

the perspective of their students (e.g., decentering) when directly engaged with students.

Hence, investigating teachers in the moment of teaching will ultimately provide researchers

better opportunities to construct second-order models of teachers’ decentering actions in-

cluding how teachers envision relationships between their thinking and their students’
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thinking in the moment of teaching. Illustrating such an outcome, after Illustration 2, Claudia

acknowledged that she needed to give more attention to how her students thought about a

problem’s contextwhen having themexplain their solutions, as opposed to primarily focusing

on the instructional goals of the lesson, her own understanding, and the students’ products.

Connections with mathematical knowledge for teaching

Researchers have conjectured that decentering is critical to the development and enactment

of mathematical knowledge for teaching (Silverman and Thompson 2008). Teachers who

develop second-order models of their students’ thinking have the opportunity to learn from

their students. Mason and Spence (1999) described this knowledge as knowing-to, a dy-

namic and evolving knowledge that is accessible at any time. The authors stated, ‘‘…the

absence of knowing-to … blocks students and teachers from responding creatively in the

moment’’ (p. 143). Other researchers (Mason 2002; Silverman and Thompson 2008;

Walshaw and Anthony 2008) also argued that such opportunities could enable teachers to

transform their own knowledge to knowledge that encompasses how students think and

develop mathematical understandings, which can be used in future interactions, including

in the design of instructional materials and in anticipating student thinking. As Johnson and

Larsen (2012) discussed, without such knowledge, teachers are constrained in their ability

to reflectively listen to their students in ways that inform their teaching. Hence, using the

construct of decentering to characterize the observable actions of teachers in the moment of

teaching may reveal information about not only teachers’ mathematical knowledge, but

also their development of the particular aspect of mathematical knowledge for teaching

that includes knowledge of student thinking and development.

Limitations and future research

A limitation of our work is the level of inferences that we are able to make with respect to

Claudia’s decentering actions. Because our work is based on inferences of students and a

teacher’s mathematical thinking in the moment of teaching, and we were only able to draw

these inferences as observers of student–teacher interactions, we do not claim a one-to-one

correspondence between our characterizations and the students’ or teacher’s thinking. In-

stead, our characterizations of these interactions are based on our own interpretations of the

interactions, which we partially created using the mathematical constructs and language of

the Pathways curriculum and instruction goals. Because decentering emerged as an important

construct during our retrospective analysis of teachers implementing the Pathways curricu-

lum in their classroom,we did not have the opportunity to utilize other researcher tools to gain

insights into teacher thinking and, particularly, the model building that a teacher might

engage to understand her or his students’ thinking. Oneway that future work in the areamight

benefit is through studies that utilize stimulated recall interviewswith teachers following their

lessons. Such work would provide additional insights into a teacher’s thinking during in-

struction and would enable researchers to develop more viable inferences of the types of

models teachers build of students thinking, ultimately supporting researchers in under-

standing how these models influence teachers’ actions.

Although we did not work directly with Claudia to improve her propensity and capacity to

decenter, we consider professional development and research studies that assist teachers in

improving their ability to effectively develop second-order models of student thinking while

teaching a potentially fruitful course of action. The use of the decentering construct in pro-

fessional development provides a clearer purpose for teacher follow-up and questioning. The

D. Teuscher et al.

123



notion of interacting reflectively to build a second-order model of student thinking provides

teachers with an image of what productive questioning accomplishes. Rather than teachers

interpreting the purpose of questioning as achieving complete, clear, or correct explanations,

theymight find themodel building focus to define the purpose of questioning as enabling those

involved in the interaction to understand each other beyond just the actions and results one

obtained. Research that reveals sources of teachers’ decentering actions may provide insights

into the mechanisms of decentering that lead to teachers’ ‘‘building second-order models of

student thinking’’ and then using those models to guide their instructional decisions.

Based on our observations of other Pathways teachers, we conjecture that a teacher’s

ability to decenter impacts the quality of classroom interactions and norms in the teacher’s

classroom. Approaching student thinking as viable independent of judgments of ‘‘cor-

rectness’’ has the potential to build classroom norms where students are willing to par-

ticipate and share their thinking as well as consider others’ thinking. For example, relative

to Claudia’s classroom in Illustration 2, her ability to develop second-order models of her

students’ thinking was associated with increases in student sharing and improvements in

the quality of their explanations when sharing their thinking with other students. As a

result, all individuals had an opportunity to learn from each other in the classroom; Claudia

learned from her students and the students learned from each other. We suggest that

researchers continue to investigate how a teacher’s propensity and capacity for decentering

influences classroom norms and individual student thinking.

Conclusion

In this article, we shared two representative illustrations of a secondary mathematics

teacher attempting to model her student’s thinking. We characterized what it means for a

teacher to build a second-order model of student thinking during teaching (i.e., decenter),

while revealing how teachers can leverage their students’ thinking to improve the quality

and nature of classroom interactions. In doing so, we demonstrated the usefulness of the

decentering construct to focus on both teacher and student thinking while examining the

nature and quality of student–teacher interactions. The illustrations provide evidence that a

teacher who understands her students’ thinking can make more deliberate in-the-moment

decisions for the purpose of advancing student learning. Teachers’ capacities to decenter

impacts such things as teachers’ decisions to pose (or not pose) a question, the nature of

teachers’ questions, the quality of their explanations, and their choices for student con-

tributions. We have also provided evidence to support that teaching and learning oppor-

tunities go unnoticed (or can go unnoticed) when teachers pay more attention to the actions

(e.g., procedures) that students do, rather than to the meanings that students construct or

hold. We encourage other researchers to use the decentering construct as a lens to examine

the quality and nature of mathematical conversations that occur during instruction.
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