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Abstract In this study, we developed a three-dimensional framework to characterize
post-secondary Calculus I final exams. Our Exam Characterization Framework (ECF)
classifies individual exam items according to the cognitive demand required to answer
the item, the representation of both the task statement and the solution, and the item’s
format. Our results from using the ECF to code 150 post-secondary Calculus I final
exams from across the United States revealed that the exams generally require low
levels of cognitive demand, seldom contain problems stated in a real-world context,
rarely elicit explanation, and do not require students to demonstrate or apply their
understanding of the course’s central ideas. We compared the results from analyzing
individual instructor’s exams with survey data of their beliefs about the conceptual
orientation of their exams. Our analysis revealed inconsistencies between our charac-
terization of Calculus I final exams and instructors’ perceptions of their final exams
relative to their conceptual focus and the extent to which the exam items ask students to
explain their thinking. We also compared the characteristics of our sample of final
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exams with post-secondary Calculus I final exams administered in 1986/87. We found
that Calculus I final exams in U.S. colleges and universities have changed very little in
the past 25 years with respect to the percentage of exam items that require students to
apply their understanding of foundational concepts, which suggest that the calculus
reform movement of the late 1980s has had little effect on what is being assessed in
current Calculus I courses in U.S. postsecondary institutions.

Keywords Calculus . Assessment .Mathematical reasoning . University level
mathematics

Introduction

Course exams are among the most revealing written artifacts of the mathematical skills
and understandings instructors want their students to acquire in a mathematics course.
A course exam provides information about an instructor’s expectations for students’
level of computational fluency, their depth of understanding specific concepts, and the
degree to which students are expected to make connections among the course’s central
ideas.

Our review of the literature related to Calculus I assessment revealed that little is
known about the content of Calculus I exams administered in colleges and universities
in the United States. Several studies have characterized items on mathematics exams
and in textbooks according to their conceptual focus (Bergqvist 2007; Boesen et al.
2006; Gierl 1997; Li 2000; Lithner 2000, 2003, 2004; Mesa et al. 2012; Palm et al.
2006), while others have examined the format of exam questions (Senk et al. 1997),
and the degree to which students can solve problems by imitating procedures
(Bergqvist 2007; Lithner 2000, 2004). These approaches, however, characterize a small
sample of exam and textbook items and therefore provide a limited snapshot of the
mathematics valued by instructors or curriculum developers. The present study pro-
vides one response to this gap in the literature by characterizing a large number of final
exams from first-semester calculus courses at a variety of post-secondary U.S. institu-
tions. The four research questions that guided this study were:

1. What are the characteristics of post-secondary Calculus I final exams in the United
States?

2. How do instructors’ perceptions of their exams compare with our characterizations
of them?

3. How is an exam item’s representation and format related to the level of cognitive
demand the item elicits?

4. How do the characteristics of our sample of modern post-secondary Calculus I final
exams compare with those from 1986/87?

We begin this paper by outlining our study’s context. We then chronicle the
development of our Exam Characterization Framework (ECF), including details on
how the existing literature informed its development and how iterative coding led to its
refinement. Next, we describe the three strands of the ECF and provide examples of
coded items to clarify potentially problematic interpretations. We then present the
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results from coding a random sample of 150 post-secondary Calculus I final exams,
collectively containing 3735 items. This is followed by a presentation of results from
comparing instructors’ perceptions of their exams with our characterization of them.
We conclude by comparing our characterization of the sample of 150 exams with the
cognitive demand of a sample of Calculus I final exams from 1986/1987 administered
at 13 different colleges and universities in the United States (Steen 1988).

Context of Study

This study is a part of a larger initiative by the Mathematical Association of America to
determine the characteristics of successful programs in college calculus. As part of a
larger data corpus, faculty from 253 universities electronically submitted instructor
surveys and Calculus I final exams from the 2010/2011 academic year. Of these 253
exams, we randomly selected 150 for use in this study. We decided to analyze a random
sample of 150 exams because we expected our results to stabilize after having coded
such a large subsample. As we analyzed the exams, we kept track of the percentage of
exam items classified within each category of the ECF and noticed that these percent-
ages became stable after having coded about 100 exams. We therefore did not see any
need to code the entire sample of 253 exams. Additionally, because we randomly
selected 150 exams from a rather arbitrary sample size of 253, we found no statistically
convincing reason to analyze the entire sample.

At the time the instructors provided data for the larger data corpus, 48 % were
tenured or tenure-track faculty, 28 % were other full-time faculty, 9 % were part-time
faculty, and 15 % were graduate students. Moreover, of the 150 exams we randomly
selected, 61.9 % were administered at national universities, 22.7 % at regional univer-
sities, 9.4 % at community colleges, 4.6 % at national liberal arts colleges, and 1.4 % at
regional colleges.1

Literature that Informed Our Development of the Exam Characterization
Framework

A major product of this study is the Exam Characterization Framework (ECF), which
provides a means by which one can efficiently code mathematics exam items to achieve
an objective characterization of the exam itself. It was our goal to locate or create a
framework to characterize items relative to their conceptual versus procedural orienta-
tion, the representational context in which the items are presented (e.g., word problems,
formulas, graphs) and the format of the items. In the first stage of developing our
framework, we examined other frameworks (e.g., Li 2000; Lithner 2004; Mesa 2010;
Mesa et al. 2012; Smith et al. 1996) that have been used to characterize items on exams
and in textbooks. While our review of the literature allowed us to identify issues that

1 National universities are those that offer a full range of undergraduate majors as well as a host of master’s
and doctoral degrees. Regional universities offer a full range of undergraduate programs, some master’s
programs, and few doctoral programs. National Liberal Arts Colleges are schools that emphasize undergrad-
uate education and award at least half of their degrees in the liberal arts fields of study. Regional colleges are
institutions focusing on undergraduate education, awarding less than half of their degrees in liberal arts fields
of study. We used the university classifications of U.S. News & World Report (www.usnews.com/education).
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were important for us to consider, we did not locate a framework that was suited for our
purpose. The ECF emerged from 12 cycles of our coding exam items, refining our
characterization of ECF constructs, and recoding items until we were satisfied that the
constructs that comprise the ECF were accurately characterizing the exam items in our
random sample and effectively distinguishing qualitatively distinct items.

In the remainder of this section, we summarize the various frameworks that
informed our design of the ECF. This literature serves as a backdrop against which
we present our framework in the following section.

Item Coding Frameworks

Li (2000) characterized items focused on the addition and subtraction of integers in
American and Chinese mathematics textbooks. Through her examination of these
textbook items, Li identified three dimensions of problem requirements: (a) mathemat-
ical feature, (b) contextual feature, and (c) performance requirements. The mathemat-
ical feature strand refers to the number of computational procedures needed to solve a
problem. Li coded items as either single computation procedure required (S) or
multiple computation procedures required (M). The contextual feature dimension of
her framework refers to the nature of contextual information contained in a problem
statement, such as whether the problem statement was situated in a purely mathematical
context in numerical or word form (PM) or illustrative context with pictorial represen-
tation or story (IC) (Li 2000, p. 237). Li further partitions the performance requirement
dimension of her framework into two categories: (a) response type, and (b) cognitive
requirement. Response type refers to the contextual feature of the solution that a task
elicits whereas cognitive requirement refers to the mental act in which one engages
while solving a task.

Lithner (2004) developed a cognitive framework to classify calculus textbook items
according to various strategies that could be employed to complete the item. His
interest in coding textbook items was based on his belief that most items in calculus
textbooks could be completed without considering the intrinsic mathematical properties
of the item. Lithner’s framework includes six reasoning practices that one might
employ when solving calculus textbook exercises, including reasoning based on
identification of similarities, reasoning based on what seems to be true based on past
experiences, and repeated algorithmic reasoning.

Smith et al. (1996) propose a taxonomy for classifying the cognitive demand of
assessment tasks that evolved from the six intellectual behaviors in the cognitive
domain of Bloom’s taxonomy (Bloom et al. 1956).2 Smith et al. adapted Bloom’s
initial taxonomy for use in a mathematical context and proposed the taxonomy
categories: (1) factual knowledge, (2) comprehension, (3) routine use of procedures,
(4) information transfer, (5) application in new situations, (6) justifying and
interpreting, (7) implications, conjectures, and comparisons, and (8) evaluation. The
primary purpose of their taxonomy was to assist instructors in writing exam items.

Anderson and Krathwohl (2001) developed a revision of Bloom’s taxonomy to
reflect developments in cognitive psychology occuring after the publication of Bloom’s

2 These six intellectual behaviors are: knowledge, comprehension, application, analysis, synthesis, and
evaluation.
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original taxonomy (Bloom et al. 1956). They also modified the categories in the
cognitive domain of Bloom’s original taxonomy to make the revised taxonomy more
suited for classifying teaching goals (e.g., defining learning objectives).

Mesa et al. (2012) analyzed the characteristics of examples in college algebra
textbooks along the four dimensions proposed by Charalambous et al. (2010): (1)
cognitive demand, (2) the expected response, (3) the use of representations, and (4) the
strategies available for verifying the correctness and appropriateness of the solution.
The cognitive demand dimension consists of the categories: memorization, procedures
without connections, procedures with connections, and doing mathematics. A student
can solve tasks that require the cognitive behavior of memorizing by simply recalling
information from memory without enacting a procedure. Tasks that require students to
employ procedures without connections can be solved by applying rehearsed proce-
dures without attending to connections to other mathematical ideas or real world
contexts. Tasks that require students to employ procedures with connections prompt
them to apply a procedure in which they draw connections to other mathematical ideas
or real world contexts. Finally, tasks that expect students to do mathematics require
them to investigate fundamental mathematics concepts that promote the generation of
new knowledge.

The expected response dimension of Mesa et al.’s analytical framework refers to the
solution that an example provides by identifying whether the solution offers only an
answer, gives an answer with an explanation or justification of the process undertaken
to arrive at that answer, or contains both an answer and a mathematical sentence.
Moreover, Mesa et al. identified the representation of the statement of the example and
the solution provided according to five representation categories: symbols, tables,
graphs, numbers, and verbalizations.

Development of the Exam Characterization Framework

Our development of the Exam Characterization Framework (ECF) began with us
familiarizing ourselves with the random sample of 150 Calculus I final exams. In
doing so we identified items that we conjectured might be difficult to characterize
relative to the level of cognition required for a correct response. Since we were most
interested in characterizing the cognitive demand of exam items, our initial coding
involved identifying the level of cognition required to solve an item. We chose to call
this dimension item orientation.

Our initial attempt to apply the three cognitive requirements in Li’s (2000) frame-
work (mathematical feature, contextual feature, and performance requirements) in our
coding revealed that these constructs were too coarsely defined for our purpose, and
thus resulted in qualitative variation of items within each category with respect to the
cognitive demand needed to respond to them. When attempting to use the various
reasoning practices defined in Lithner’s (2004) framework, we found that without
knowledge of students’ prior experiences, the boundaries of each classification lacked
the specificity required to code items with a high degree of reliability. However, we did
adopt Lithner’s approach to classifying items based on the cognitive demand that was
necessary for providing a correct response. Attending to the cognitive demand required
by a task was necessary to achieve a reliable characterization of exam items since we
did not have knowledge of students’ experiences in their calculus courses.
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We became aware of Mesa et al.’s framework after having developed a complete
draft of the ECF, but decided to consider her constructs for the purpose of refining our
framework, especially since her dimensions had some similarities with those in the
ECF. We attempted to code select exam items using the cognitive demand dimension of
Mesa et al.’s (2012) framework, but found their characterization of the cognitive
demand of exam items more related to desired understandings instead of the under-
standings that a task requires. Moreover, we had difficulty agreeing on precisely what
constitutes a connection for an exam item. While discerning whether or not exam items
evoked connections, we were unable to reliably categorize items within the Bprocedures
without connections^ and Bprocedures with connections^ categories of the cognitive
demand dimension of Mesa et al.’s framework.

The categories of Smith et al.’s (1996) framework, which evolved from Bloom’s
origional taxonomy (Bloom et al. 1956), appealed to us, but because they were
designed to assist instructors in writing exam items, their categories lacked the hierar-
chical structure that a diagnostic taxonomy typically requires. Therefore, Anderson and
Krathwohl’s (2001) modification of the six intellectual behaviors in the cognitive
domain of Bloom’s taxonomy was the most helpful for informing our approach to
coding the cognitive demand of exam items. Anderson and Krathwohl (2001) devel-
oped their revision of Bloom’s taxonomy to reflect developments in cognitive psychol-
ogy occuring after the publication of Bloom’s original taxonomy, and to make the
taxonomy more suited to the purposes of classroom teaching (e.g., defining learning
objectives). They characterize the levels of their taxonomy using the verbs: remember-
ing, understanding, applying, analyzing, evaluating, and creating.

Since we were evaluating tasks rather than actual behaviors, our definitions needed
to focus exlusively on the nature of the exam items, leading us to consider the
categories: remember, understand, apply, analyze, evaluate, and create. Coding the
cognitive demand of calculus exam items using these constructs revealed that some
items (e.g., determine the derivative of f) required students to use procedural skills
while requiring no understanding of the concept(s) on which the skills are
based. This required a different cognitive behavior than simply recalling infor-
mation, and led to our introducing the construct recall and apply procedure to
Anderson and Krathwohl’s levels. Similarly, our preliminary coding revealed
that one could demonstrate an understanding of a concept without applying the
understanding to achieve a goal or solve a problem, resulting in our introducing
the level apply understanding.

To classify exam items relative to the cognitive demand they elicit, we have adapted
the six intellectual behaviors in the conceptual knowledge dimension of Anderson and
Krathwohl’s modified Bloom’s taxonomy to (1) reflect the variety of cognitive behav-
iors elicited by mathematics tasks, and (2) accurately characterize the cognitive demand
of mathematics tasks in the absence of information about students’ prior knowledge for
whom the tasks were intended. We describe these constructs, and our use of them, in
more detail in the following section.

In the process of coding items, we found it relatively straightforward to specify the
representation in which mathematics items are presented. Consistent with Li (2000) and
Mesa et al. (2012), we also found it useful to code both the representation of the
problem statement and the representation of the solution. We noted a representation
type in the solution only if it was necessary to solve the problem or complete the task.
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The mathematical feature dimension of Li’s framework led us to consider the coding
dimension item density. We defined a dense item as one that necessitates the incorpo-
ration of multiple concepts, procedures, and skills. However, since calculus tasks are
often subject to being solved in a variety of ways, we were unable to specify how many
procedures and concepts were needed to solve a specific calculus problem. Moreover,
the grain-size of Bprocedure^ has a wide range of interpretations, thus making coding
problematic for more complicated tasks. We thus determined that our attempts to code
items according to the number of procedures and concepts that are needed to solve a
problem was less important than the overall cognitive demand of the task. As a result,
we abandoned the item density dimension early in our framework development.

We also considered the fourth dimension of Mesa et al.’s framework that identifies
the strategies needed for students to employ control (i.e., verify the correctness and
appropriateness of a solution) during the process of completing a task. Our efforts to
code for control led us to recognize that control is exercised idiosyncratically since it
is initiated by a student’s assessment of the validity and appropriateness of their own
work. For example, one student might take the time to reflect on the reasonableness
of computations when working a multi-step applied problem, while another student
might continue with a sequence of memorized steps and pay no attention to compu-
tations that produce unreasonable results. There are, however, instances in which
students are more likely to exhibit control. Two such instances are when a question
prompts students to provide either an explanation or justification for their work. Mesa
et al. refer to such actions as further elaboration. We conjecture that the act of
providing an explanation or justification might require one to reflect upon and assess
the correctness of his or her work. However, if the teacher had the student practice
justifying a response or solution, in homework or during class, it is possible that the
student did not exercise control when responding to the exam item. Therefore, instead
of coding for a mental process that a student might or might not exercise when
responding to an item, we decided to not code for control but rather to add a
dimension in the item format category for noting instances in which exam items
require students to explain or justify their response.

Exam Characterization Framework

The Exam Characterization Framework characterizes exam items according to three
distinct item attributes: (a) item orientation, (b) item representation, and (c) item format.
The first two authors independently coded five Calculus I final exams while making
note of each exam item’s characteristics. We then met to compare and refine our
characterizations so as to ensure that our meanings were consistent. After 12 cycles
of coding and meeting to compare and refine our characterizations, we emerged with a
stable framework that included categories that we found to be most useful for charac-
terizing Calculus I final exam items. Two other coders coded ten randomly selected
exams for the purpose of establishing the readability of our construct descriptions. After
we refined the framework, the lead author independently coded all 150 exams in the
sample.

The item orientation dimension of the framework includes the following seven
categories of intellectual behaviors needed to respond to an exam item: remember,
recall and apply procedure, understand, apply understanding, analyze, evaluate, and
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create. When coding items for their representation type, we coded representations
present in the question or problem statement. We also coded for the representations
required when responding to a question or working a problem. This dimension of our
framework includes the categories: applied/modeling, symbolic, tabular, graphical,
definition/theorem, proof, example/counterexample, and explanation. The third dimen-
sion of our framework is item format, with the categoriesmultiple choice, short answer,
and broad open-ended. When coding the format of the item, we also noted whether the
item required students to provide a justification or explanation.

Item Orientation

The six classifications of the item orientation taxonomy are hierarchical, as is Bloom’s
taxonomy and Anderson and Krathwohl’s (2001) modification of Bloom’s taxonomy.
The lowest level requires students to remember information and the highest level
requires students to make connections (see Table 1). When coding items using the
item orientation categories, we classified an item at a specific level only when this
cognitive behavior was necessary for responding to the item. Even if an item was
designed to assess a student’s understanding of an idea, if a student is able to solve the
problem by applying a memorized procedure, then we classified the item as Brecall and
apply a procedure.^ As emphasized above, since we had no information about students’
experiences in their calculus courses, we attended only to the highest-level cognitive
behavior that a task required. We also made a distinction between items that require
students to understand an idea and those that require students to apply their under-
standing of an idea or concept (e.g., derivative) to solve the problem. The intellectual
behaviors in the item orientation taxonomy of the ECF are described in more detail in
Table 1.

Note that item orientation is not the same as item difficulty. The former takes as the
unit of analysis the type of cognition an exam item elicits while the latter focuses on an
item’s complexity. A procedural item might be very complex (e.g., differentiating a
complicated function) while a item that requires understanding might be relatively
straightforward (e.g., explain what the output value of a point on the derivative function
represents).

Characterizing the Item Orientation Dimensions

This subsection presents examples of Calculus I items that require the various cognitive
behaviors within the item orientation taxonomy of the ECF. We provide examples from
the first five categories of the item orientation taxonomy only, since none of the
Calculus I final exam items we coded met the criteria for eliciting the cognitive
behaviors Bevaluate^ or Bcreate.^ We chose these examples to illustrate some of the
more difficult interpretations we made during coding. These descriptions should also
help to clarify our taxonomy categories.

Exam items that elicit the cognitive behavior of remembering prompt the student to
recall factual information, but do not require the student to apply a procedure or
demonstrate understanding. As one example, a test question that we classified as
Bremember^ prompted students to recall a part of the statement of the Mean Value
Theorem (Fig. 1). Successfully answering the question in Fig. 1 does not require
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students to demonstrate their understanding of the Mean Value Theorem, nor apply it to
solve a problem. Simply recalling the statement of the theorem itself is sufficient.

Test items that require students to recall and apply a procedure typically contain
verbal or symbolic cues that prompt students to use a definition, rule, theorem,
algorithm, or procedure to determine an answer. These items commonly appear in a
section of a test where students are directed to differentiate or integrate a function, or
evaluate a limit. Such test items require students to apply differentiation rules, integra-
tion techniques, or limit properties in an algebraic context but do not require students to
understand the rationale for their actions. For the purpose of contrasting the Brecall and
apply procedure^ category with the Bremember^ category, consider the task in Fig. 2,
which requires the use of the Mean Value Theorem.

The task (Fig. 2) prompts students to employ a procedure using the conclusion of the
Mean Value Theorem without requiring them to demonstrate an understanding of the
Mean Value Theorem. That is, the task does not require the student to recognize that the
Mean Value Theorem ensures that, for a function f that is continuous on the closed

Table 1 Adaptation of the six intellectual behaviors from Anderson and Krathwohl (2001)

Cognitive
behavior

Description

Remember Students are prompted to retrieve knowledge from long-term memory (e.g., write the
definition of the derivative).

Recall and apply
procedure

Students must recognize what procedures to recall when directly prompted to do so in the
context of a problem (e.g., find the derivative/limit/antiderivative of f).

Understand Students are prompted to make interpretations, provide explanations, make comparisons or
make inferences that require an understanding of a mathematics concept.

Apply
understanding

Students must recognize when to apply a concept when responding to a question or when
working a problem. To recognize the need to apply, execute or implement a concept in
the context of working a problem requires an understanding of the concept.

Analyze Students are prompted to breakmaterial into constituent parts and determine how parts relate
to one another and to an overall structure or purpose. Differentiating, organizing, and
attributing are characteristic cognitive processes at this level (Krathwohl 2002, p. 215).

Evaluate Students are prompted to make judgments based on criteria and standards. Checking and
critiquing are characteristic cognitive processes at this level (Krathwohl 2002, p. 215).

Create Students are prompted to put elements together to form a coherent or functional whole;
reorganize elements into a new pattern or structure. Generating, planning, and producing
are characteristic cognitive processes at this level (Krathwohl 2002, p. 215).

Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). 

Then there exists some c in (a, b) such that  

a.  f (c) = 0          b.  ′f (c) = 0          c.  
f (b) − f (a)

b− a
= ′f (c)            d.  

′f (b) − ′f (a)

b− a
= f (c)

Fig. 1 Sample item requiring the cognitive behavior of remembering
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interval [a, b] and differentiable on the open interval (a, b), there exists a point c on (a,
b) such that the average rate of change of f over [a, b] is equal to the instantaneous rate
of change (or derivative) of f at c. Moreover, the task does not require the student to
justify why the statement of the Mean Value Theorem is true, nor does it require
students to interpret the solution’s meaning.

We view understanding in a way compatible with Piaget (1968). To Piaget, under-
standing was synonymous with assimilation to a scheme (Thompson 2013). Hence, in
our view, test items that prompt students to demonstrate they have assimilated a concept
into an appropriate scheme are classified as Bunderstand.^ Tasks that require under-
standing could require students to make inferences about the concept by providing
examples, making interpretations or comparisons, or providing explanations. For
example, the item in Fig. 3 requires students to interpret the meaning of the derivative
at a point, the average rate of change, and the definite integral in the context of a
situation.

The task in Fig. 3 requires students to demonstrate an understanding by asking them
to interpret the meaning of various expressions. Part (a) requires students to
interpret the symbols that represent a derivative at a point, part (b) requires students
to explain the meaning of average rate of change on a specified interval of a function’s
domain, and part (c) requires students to interpret integral notation and the meaning of a
definite integral. That students must interpret these expressions in the context of a
function that defines the relationship between quantities (Thompson 2011) additionally
requires understanding. We should caution, however, that tasks might elicit understand-
ings we, or others, do not consider desirable. In general, our coding of items relative to
the understandings they elicit was not influenced by our assessment of the utility or
desirability of these understandings.

The intellectual behavior of applying understanding involves applying the product
of an understanding as opposed to applying a rehearsed procedure. If a student is
applying concepts or procedures that are brought to the task, the student must then

Show that the function f(x) = x2 satisfies the hypotheses of the Mean Value Theorem on the 

interval [0, 4] and find a solution c to the equation,  

f (b) − f (a)

b− a
= ′f (c)

on this interval.  

Fig. 2 Sample item requiring the cognitive behavior of recalling and applying a procedure

Let r(x) represent the total revenue obtained by Company A from selling x items. Interpret the 

meaning of the following: 

a.  ′r (4,579)                     b.  
r(998) − r(351)

998 − 351
                     c.  r(x)dx

2,485

10,219

∫

Fig. 3 Sample item requiring the cognitive behavior of understanding
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recall those concepts or procedures and apply them. Since we are not able to assess the
understandings that students bring to the task, we must ask, BDoes the task present the
student with an opportunity to demonstrate understandings, and further, does the task
necessitate the application of these understandings in order to successfully complete the
task?^ If so, the item’s orientation is Bapply understanding.^

Tasks that require students to apply understanding often require them to transfer
knowledge to a less familiar domain in which surface features of the problem statement
cannot serve as cues to trigger the enactment of a rehearsed problem-solving procedure.
For example, consider the task in Fig. 4. This task requires students to first identify
relationships between relevant varying and constant quantities for the purpose of
defining a function to describe how an angle measure and distance are varying together.
Students then need to recognize that determining the derivative of the distance with
respect to the angle measure will produce a new function that describes the rate of
change of the vertical distance that the balloon has traveled with respect to the angle of
elevation. Knowing to take the derivative requires that students understand the useful-
ness of the derivative in determining the speed of the balloon at a moment in time.

Test items that elicit the cognitive behavior of analyzing require students to deter-
mine the relationships between constituent components of a mathematical concept, and
then establish how these components contribute to the overall structure or purpose of
the concept. For instance, consider the task in Fig. 5. The task prompts students to
explain the meaning of the limit concept and describe why it is a central idea in the
study of calculus; thereby requiring students to determine the relationship between the
limit concept and other central concepts such as differentiation and integration. We
claim that a task of this type requires a strong understanding of limit in addition to more
advanced cognitive structures since students must understand and explain how complex
ideas are connected.

Item Representation

Characterizing the representation of exam items involved classifying both the repre-
sentation(s) used in the stated task and the representation(s) of the correct solution.
Table 2 describes these classifications relative to the task statement and the solution. We
also note that both the task statement and the solicited solution can involve multiple
representations.

It is important to note that since many tasks can be solved in a variety of ways and
with consideration of multiple representations, we coded for the representation request-
ed in the solution by considering only what the task requires for an answer. For

A hot air balloon rising straight up from a level field is tracked by a range finder 500 feet from 

the lift-off point. At the moment the range finder’s elevation angle is π/4, the angle is increasing 

at the rate of 0.14 radians per minute. How fast is the balloon rising at that moment? (Finney et 

al., 2007, p. 247). 

Fig. 4 Sample item illustrating the contrast between the Brecall and apply procedure^ and Bapply
understanding^ levels of the item orientation taxonomy
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example, a problem that asks students to calculate the slope of a tangent line only
requires a student to do symbolic work. Accordingly, we would not code Bgraphical^ as
a representation of the solution since reasoning graphically is not necessary to solve the
problem, even though the problem has graphical meaning.

Item Format

The third and final strand of the Exam Characterization Framework is item format. The
most general distinction of an item’s format is whether it is multiple-choice or open-
ended. However, open-ended tasks vary in terms of how they are posed. For instance,
the statement of an open-ended task could prompt the student to respond to one

Write a one-page essay explaining why the concept of limit is a central theme of the course. 

Your essay should describe what it means to understand this concept and explain how the 

concept is related to other ideas in the course. 

Fig. 5 Sample item requiring the cognitive behavior of analyzing

Table 2 Descriptions of item representation categories

Item representation Task statement Solicited solution

Applied/modeling The task presents a physical or contextual
situation.

The task requires students to define
relationships between quantities. The
task could also prompt students to
define or use a mathematical model
to describe information about a
physical or contextual situation.

Symbolic The task conveys information in the
form of symbols.

The task requires the manipulation,
interpretation, or representation of
symbols.

Tabular The task provides information in the
form of a table.

The task requires students to organize data
in a table.

Graphical The task presents a graph. The task requires students to generate a
graph or illustrate a concept graphically
(e.g., draw a tangent line or draw a
Riemann sum).

Definition/theorem The task asks the student to state or
interpret a definition or theorem, or
presents/cites a definition or theorem.

The task requires a statement of a
definition or theorem, or an
interpretation of a definition or theorem.

Proof The task presents a conjecture or
proposition.

The task requires students to demonstrate
the truth of a conjecture or proposition
by reasoning deductively.

Example/
counterexample

The task presents a proposition or
statement with the expectation that an
example or counterexample is provided.

The task requires students to produce an
example or counterexample.

Explanation Not applicable. This code is particular to
what is expected in the students’
solution.

The task requires students to explain
the meaning of a statement.
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question that has one correct answer. Such an item is similar to a multiple-choice item
without the choices and is therefore classified as short answer. In contrast, a broad
open-ended task elicits various responses, with each response typically supported by
some explanation. The form of the solution in a broad open-ended item is not
immediately recognizable when reading the task. In addition to coding tasks as short
answer or broad open-ended, we also noted instances in which a task was presented in
the form of a word problem. Also, tasks that require students to explain their reasoning
or justify their solution can be supplements of short answer or broad open-ended items.
We distinguish between explanations and justifications in that explanations are pre-
sented in the form of narrative descriptions, using words, and justifications are pre-
sented mathematically (e.g., requiring further symbolic or computational work to
demonstrate the validity of some previous result). Table 3 contains descriptions of
the item format codes.

Table 4 contains the constructs that comprise each of the three dimensions of the
Exam Characterization Framework.

The first author trained two graduate students in mathematics to use the Exam
Characterization Framework. The graduate students then coded ten randomly selected
exams (containing 226 items) so that we could examine inter-rater reliability. Our
primary purpose in measuring inter-rater reliability was to ensure that the constructs
within the Exam Characterization Framework were defined with sufficient clarity. For
this reason, we were satisfied with calculating percent agreement rather than a more
formal reliability measure like Krippendorff’s alpha or Fleiss’ kappa. The first author
and the two graduate students achieved a reliability of 89.4 % for the item orientation
codes, 73.2 % for the item representation codes, and 92.7 % for the item format codes.
We note that the item representation codes were more difficult since coding for item
representation involved identifying both the representation of the task statement and the
representation of the intended solution, either of which could receive multiple repre-
sentation codes.

Table 3 Descriptions of item format categories

Item format Description

Multiple choice One question is posed and one answer in a list of choices is correct. The student is
prompted to select the correct answer among the choices.

Short answer The item asks the student to respond to one question that has one correct answer. The
student can anticipate the form of the solution merely by examining the task—this is
similar to a multiple-choice item without the choices.

Broad open-ended There are multiple ways of expressing the answer. The form of the solution is also not
immediately recognizable upon immediate inspection of the task.

Word problem A word problem is posed in a contextual setting, and prompts students to create an
algebraic, tabular and/or graphical model to relate specified quantities in the
problem, and could also prompt students to make inferences about the quantities
in the context using the model. Note that a word problem can be posed as either
short answer or broad open-ended or multiple choice. Hence, we code a task as a
word problem in addition to identifying it as either short answer or broad open-ended.

Explain (E) and justify (J) are subcodes of Item Format
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Even though we have evidence that our coding framework is highly reliable if used
by knowledgeable coders, we do not advocate that others attempt to use this framework
to code Calculus I exams, or exams in another mathematics content area in mathematics
(e.g., precalculus), without establishing consistency among coders. We believe the
process of familiarizing oneself with the items in one’s data set and the constructs that
comprise our coding framework is necessary, and that in any setting a high level of
consistency among coders should be established prior to generating coded results for
use in analyses. In our case, we had established consistency between the first two
authors of this article for the purpose of refining the constructs and providing clearly
stated descriptions of our meaning of each construct; however, we assured consistency
in coding since the first author coded all items on all 150 exams in our sample. It was
also important that the first author had a clear understanding of the intended meaning of
all constructs in our framework and repeatedly coded items that were particularly
challenging to code.

Limitations

There are several limitations of our framework, as well as our use of it to characterize
post-secondary Calculus I final exams. The first is shared by some of the existing
frameworks in the literature. Identifying the cognitive demand that exam items elicit in
students is problematic since we have no knowledge of the instruction the students
taking any particular exam experienced. As a result, a seemingly rote task has the
potential to be highly novel for students who have not been exposed to the procedure or
method for solving the task. Conversely, tasks that might appear to require an under-
standing of a particular concept are amenable to being proceduralized if the solution

Table 4 Summary of exam characterization framework dimensions

Exam characterization dimension Categories

Item orientation Remember
Recall and apply procedure
Understand
Apply understanding
Analyze
Evaluate
Create

Item representation Applied/modeling
Symbolic
Tabular
Graphical
Definition/theorem
Proof
Example/counterexample
Explanation

Item format Multiple choice

Open-ended

Short answer

Word problem

Broad open-ended
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method is practiced repetitiously. We spoke earlier of our intention to code for the
minimal reasoning practices and solution representations that a task requires. To do this
with a reasonable degree of validity required us to assess minimal reasoning practices
and solution representations relative to our model of the epistemic collegiate calculus
student.3 Additionally, our coding was informed by our knowledge of those concepts in
the calculus curriculum that are generally proceduralized (e.g., differentiation, integra-
tion, limit evaluation). The first two authors have taught the entire calculus sequence
multiple times and have researched student learning in Calculus I. These common
experiences resulted in the authors reaching a common understanding of what consti-
tuted viable models of the epistemic calculus student and the general calculus
curriculum.

A second limitation is that we do not have data indicating how the exams were
graded. Accordingly, we present our results as percentages of exam items classified
within each of the respective categories of the Exam Characterization Framework. This
method of computing results does not account for the reality that particular exam items
might represent a higher portion of the exam grade, and thus be valued by the instructor
to a greater extent.

A third limitation is that we coded each part of an item as an individual item. For
instance, we coded a task that has parts (a), (b), and (c) as three distinct items.
This is a limitation in the sense that some instructors have a tendency to sub-
divide tasks while others do not, and our Exam Characterization Framework
does not identify the number of mathematical procedures or understandings
needed to complete a task. However, our large sample size somewhat mediates
this concern. While our decision to code each part of an exam question as an
individual item has its disadvantages, a reviewer of a previous version of this
manuscript suggested that this decision might have contributed to our achieving
a more accurate characterization of the final exams since an instructor’s subdi-
vision of tasks might constitute a form of scaffolding intended to provide
students with explicit intermediate goals.

In the introduction of this paper, we reveal our assumption that the content of a final
exam reflects an instructor’s expectations for students’ learning. We were less explicit,
however, about our assumption that a final exam is a viable representation of an
instructor’s assessment practices. While both assumptions were crucial to the
design of this study, we would like to preface our results by acknowledging
three limitations of these assumptions. First, many instructors administer de-
partmental exams, which are typically developed by course coordinators who
solicit the input of the faculty to various extents. A final exam may therefore
not be under the direct control of individual instructors. Second, mathematics
departments often experience pressure from client departments and higher
administration to lower failure rates in introductory courses. This pressure
might compel instructors and course coordinators to create exams that are not
as cognitively demanding than they would otherwise be. Third, instructors
might use more conceptually oriented tasks to support students’ learning of
content that are not reflected in exams that are designed to assess learning

3 BEpistemic collegiate calculus student^ is used in the Piagetian sense and is characterized by our idealized
abstraction of the college calculus student.
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outcomes. All of these factors likely contribute to skewing the makeup of final
exams toward more procedural tasks. We encourage the reader to interpret our
results in light of these limitations.

Results

Data analysis in this study consisted of three phases. In the first phase, we developed
the Exam Characterization Framework discussed above and used it to code the 150
randomly selected exams in our sample. In the second phase, we compared the coded
exam data with data obtained from a post-term instructor survey with the intention of
determining the extent to which our characterization of the exams corresponds with
instructors’ perceptions of their exams relative to their conceptual orientation. In the
third phase, we coded 13 Calculus I final exams administered in U.S. colleges and
universities in 1986/87 and compared these results to those of our random sample of
150 exams.

Characteristics of Post-Secondary Calculus I Exams

The results from coding the 150 Calculus I final exams using the item orientation
taxonomy revealed that only 14.72 % of the 3735 exam items required students to
demonstrate an understanding of an idea or procedure. More specifically, 6.51 % of the
items required students to employ the cognitive behavior of remembering, 78.70 % of
the items required students to recall and apply a rehearsed procedure, 4.42 % required
students to demonstrate an understanding, and 10.30 % of the exam items required
students to apply their understanding while solving a problem. These results indicate
that the vast majority of exam items (85.21 %) could be solved by simply retrieving
rote knowledge from memory, or recalling and applying a procedure, requiring no
understanding of an idea or why a procedure is valid.

Of the 150 exams coded, 90 % of them had at least 70 % of their items coded at the
Bremember^ or Brecall and apply procedure^ levels of the item orientation taxonomy.
Additionally, only 2.67 % of exams had 40 % or more of the items requiring students to
demonstrate or apply understanding. Table 5 contains the coding results for the item
orientation taxonomy.

The box plots in Fig. 6 provide a summary of the percentage of exam items per exam
within each category of the item orientation taxonomy. Consistent with the aggregate

Table 5 Percentage of items
within each category of the item
orientation taxonomy

Item orientation %

Remember 6.51

Recall and apply procedure 78.70

Understand 4.42

Apply understanding 10.30

Analyze 0.11

Evaluate 0

Create 0
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data in Table 5, we observe that the highest percentage of exam items per exam
required the cognitive behavior of recalling and applying a procedure, with consistent
distributions for the Bremember,^ Bunderstand,^ and Bapply understanding^ categories
of the taxonomy. We also observe that the minimum value for the distribution of the
percentage of exam items requiring students to recall and apply a procedure exceeds the
maxima of all other distributions in the plot—suggesting that any single exam
contained more items requiring students to recall and apply a procedure than demon-
strate any other cognitive behavior.

We calculated the percentage of items within each category of the item orientation
taxonomy for each post-secondary institution type, and the results are provided in Table
6. The highest percentage of items requiring the cognitive behavior of recalling and
applying procedures were those from community colleges (84.4 %) while the lowest
were from national liberal arts colleges (69.6 %)—those that emphasize undergraduate
education and award at least half of their degrees in the liberal arts fields of study. It is
also noteworthy that national universities contained the highest percentage of items
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Fig. 6 Box plots representing the percentage of items per exam within each category of the item orientation
taxonomy

Table 6 Percentage of items within each item orientation by post-secondary institution classification

Item orientation National
university

Regional
university

Community
college

National liberal
arts college

Regional
college

Remember 5.53 % 9.33 % 4.25 % 8.77 % 13.46 %

Recall and apply procedure 78.9 % 77.6 % 84.4 % 69.6 % 78.8 %

Understand 4.6 % 3.0 % 3.7 % 10.5 % 3.8 %

Apply understanding 10.8 % 10.0 % 7.6 % 10.5 % 3.8 %

Analyze 0.1 % 0.1 % 0.0 % 0.0 % 0.0 %

Evaluate 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Create 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
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requiring students to apply their understanding (10.8 %) while the lowest were from
regional colleges (3.8 %)—those that focus on undergraduate education, awarding less
than half of their degrees in liberal arts fields of study. Moreover, national liberal arts
colleges contained the highest percentage of items at the Bunderstand^ level of the item
orientation taxonomy or higher (21 %), while regional colleges contained the highest
percentage of items at the Bremember^ or Brecall and apply procedure^ levels
(96.26 %).

In terms of item representation, exam items were predominantly stated
symbolically (73.70 %) or required a symbolic solution (89.4 %). Few items
prompted students for information in the form of a table (1.02 %), presented
a proposition or statement with the expectation that students provide an
example or counterexample (0.59 %), or presented a conjecture or proposi-
tion with the expectation that students construct a proof (1.29 %). Table 7
contains percentages of exam items within each of the item representation
categories.

The majority of Calculus I final exam items in our sample were stated
symbolically and required a symbolic solution (65.45 %). Moreover, only
6.94 % of the items presented a physical or contextual situation and solicited a
solution in which students were required to define relationships between quantities or
use a mathematical model to describe information about a physical or contextual
situation. Taking into consideration the increased emphasis in calculus on making
connections among multiple representations (i.e., words, symbols, tables, and graphs),
it is noteworthy that only 9.59 % of exam items were stated exclusively as Bapplied/
modeling,^ Bsymbolic,^ Btabular,^ or Bgraphical^ while requiring the solution to be
presented in a different representation. Table 8 outlines the most prevalent combinations
of item representations in our sample.4

Our analysis also indicated that introductory calculus final exams seldom
include tasks that are stated in the context of a real-world situation. Our coding
revealed that 38.67 % of the coded exams had less than 5 % of the items
classified as word problems, in either the Bshort answer^ or Bbroad open-
ended^ format categories. Further, only 22 % of the coded exams had more
than 10 % of the exam’s test items classified as a word problem in the Bshort
answer^ or Bbroad open-ended^ format categories. It is also noteworthy that
18 % of the exams contained no word problems. We provide the coding results
from the item format dimension of the ECF in Table 9.

In the final analysis, results from coding the 150 randomly selected exams
with the Exam Characterization Framework revealed that the Calculus I final
exams in our random sample require low levels of cognitive demand, contain
few problems stated in a real-world context, rarely elicit explanation, and
seldom require students to demonstrate or apply their understanding of the
course’s central ideas.

4 By Bmost prevalent^ we refer those item representations that accounted for more than 1 % of items in our
sample.
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Contrast Between Instructors’ Beliefs and Coding Results

To address the second focus of our study, we coordinated the results of the exam codes
and instructors’ responses to a post-term instructor survey. We devoted particular
attention to identifying inconsistencies between our findings about the characteristics
of the Calculus I final exams and instructors’ perceptions of their exams.

Figure 7 provides the distribution of instructors’ survey responses to the question,
BHow frequently did you require students to explain their thinking on exams?^
Responses ranged from 1 (not at all) to 6 (very often). We note that we would very
likely have coded an exam item requiring explanation as either Bunderstand^ or Bapply
understanding^ using the item orientation taxonomy. Results from the item format
codes indicate that a total of 3.05 % of all items coded (N=3735) required an
explanation. Further, only 14.72 % of all exam items were coded as Bunderstand^ or
Bapply understanding^ using the item orientation taxonomy. However, 68.18 % of all
instructors who submitted exams that were part of our sample selected either 4, 5, or 6
on this survey item, indicating that these instructors claim to frequently require their
students to explain their thinking on exams. These data reveal that the instructors’
Calculus I final exams do not align with their perceptions of them relative to the extent
to which students are required to explain their thinking.

Similarly, there were also discrepancies between our characterization of the
final exams and survey responses with respect to the percentage of exam items
that emphasized skills and methods for executing computations. Figure 8
displays the distribution of instructors’ responses to the survey question, BOn
a typical exam, what percentage of the points focused on skills and methods for
carrying out computations?^ The median response was 50 %. Our coding
results, however, indicate that 78.7 % of exam items require students to recall
and apply a procedure. Additionally, 89.4 % of all exam items required students
to perform symbolic computations.

In summary, these data reveal that there is a misalignment between our
characterization of Calculus I final exams and instructors’ perceptions of their
exams relative to the extent to which students are asked to explain their
thinking and the percentage of exam items that focus on skills and methods
for carrying out computations.

Table 7 Percentage of items within item representation categories

Item representation (task) % Item representation (solution) %

Applied/modeling 13.20 Applied/modeling 6.96

Symbolic 73.70 Symbolic 89.40

Tabular 1.02 Tabular 0.19

Graphical 10.40 Graphical 5.70

Definition/theorem 3.51 Definition/theorem 4.36

Proof 1.29 Proof 1.53

Example/counterexample 0.59 Example/counterexample 0.59

Explanation 2.36 Explanation 2.36
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Correlating Item Orientation with Representation and Format

To determine if particular item representations or formats necessitated higher-order
cognitive activity, we calculated the percentage of item representations and item format
types within each item orientation category. Table 10 documents the percentage of the
most common item representation types (used in the task and asked for in the solution)
for the first four levels of the item orientation taxonomy.5

As Table 10 indicates, the highest percentage of items (30.20 %) that required the
cognitive behavior of remembering were stated symbolically and required a symbolic
solution. Similarly, the vast majority of tasks that required students to recall and apply a
procedure (78.98 %) were stated symbolically and required a students to produce a
solution in the form of mathematical symbols. We also observed that the percentage of
items on an exam that were stated symbolically and solicited a symbolic solution
decreased as tasks demanded higher levels of cognitive behavior (10.30 % in the
Bunderstand^ category, 5.50 % in the Bapply understanding^ category, and 0 % in the
Banalyze^ category6).

It is also noteworthy that items presented in a contextual or physical situation (i.e.,
applied/modeling) were most prevalent among items that required students to apply
understanding (70.94 %). The applied/modeling tasks also represented a significant
percentage of items that required students to demonstrate understanding (10.30 %).
Moreover, 20 % of items that required students to demonstrate understanding presented
information in the form of a graph and solicited symbolic work in the solution—
although these items often required explanation or justification. Thus, in the majority of
items that required students to demonstrate understanding or apply understanding,
students were required to interpret information from a graphical representation or
applied setting. As an example, consider the task in Fig. 9 stated graphically.

All parts of the task in Fig. 9 require students to demonstrate understanding since
they are asked to infer the behavior of a function f and a function ∫f(x)dx by examining

5 By Bmost common,^ we refer to an exclusion of item representations that represented less than 5 % of the
items within a specific item orientation category.

6 The percentages of item representations within the Banalyze^ category of the item orientation taxonomy are
not provided in Table 11 as a result of the small number of items within this category (n = 4).

Table 8 Percentage of exam items within item representation categories

Item representation (task) Item representation (solution) %

Symbolic Symbolic 65.45

Applied/modeling Applied/modeling; Symbolic 6.86

Graphical Symbolic 6.72

Applied/modeling Symbolic 4.90

Symbolic Graphical 2.01

Definition Definition 1.90

Symbolic Symbolic; Graphical 1.61
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only the graphical behavior of the function f′; thereby requiring students to attend to the
meaning of the derivative function and what the indefinite integral represents.

Table 11 indicates the percentage of various item formats within the first four
categories of the item orientation taxonomy.7 We find it notable that short answer items
requiring students to provide an explanation accounted for a much higher percentage of
items eliciting the cognitive behavior of understanding (15.15 %) than items requiring the
recollection and application of a procedure (1.16%) or items simply prompting students to
remember (0.41%). Moreover, 97.93% of word problems—whether stated in the form of
multiple choice, short answer, or broad open-ended—provided students with the oppor-
tunity to apply their understanding. Finally, we observe that 6.50 % of the total number of
items prompting students to provide an explanation or justification required only the
cognitive behavior of remembering, whereas 27.64 % required students to recall and
apply a procedure, 31.71 % required students to demonstrate understanding, and 34.15 %
provided students with the opportunity to apply their understanding.

These data suggest that items presented in the form of word problem or prompting
students to provide an explanation or justification for their work elicit higher-order
cognitive behavior.

Comparing the Cognitive Demand of Our Sample with Final Exams from 1986/87

The results presented thus far reveal that our sample of post-secondary Calculus I final
exams require low levels of cognitive engagement, rarely make use of real-world
contexts, seldom elicit explanations or justifications, and do not provide students with
opportunities to demonstrate or apply their understanding. These results are particularly
surprising considering the considerable amount of attention devoted to the conceptual
teaching of calculus throughout the past 25 years. This led us to consider how

7 We include only those item formats representing more than 1 % of the items within the first four item
orientation categories.

Table 9 Percentage of items
within each item format category

Item format %

Multiple choice 11.70

Multiple choice (explain) 0.59

Multiple choice (justify) 0.19

Multiple choice (word problem) 0.40

Short answer 76.10

Short answer (explain) 2.38

Short answer (justify) 1.04

Short answer (word problem) 6.05

Broad open-ended 1.23

Broad open-ended (explain) 0.08

Broad open-ended (justify) 0

Broad open-ended (word problem) 0.03
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contemporary Calculus I final exams compare with those administered prior to the
calculus reform movement. We were able to achieve this comparison by coding
Calculus I final exams administered in 1986/87 to students enrolled in first semester
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calculus from a variety of post-secondary institutions across the United States, from
large doctoral granting universities to small 2-year colleges (Steen 1988). The 13
Calculus I final exams (with 354 total items) we coded were included in the appendix
of Steen (1988). We provide the results from coding this sample of 1986/87 exams
relative to item orientation in Table 12.

Our analysis revealed that there is a statistically significant difference between the
proportion of items requiring students to recall and apply a procedure in our sample of
150 calculus exams and the 13 Calculus I final exams from 1986/87.8 The difference
between these two data sets in the proportion of items within the Bapply understanding^
category of the item orientation taxonomy, however, is not statistically significant.
While there is significantly less emphasis on recalling and applying procedures in
contemporary Calculus I exams, compared to those administered 25 years ago, our
results suggest that the proportion of exam items eliciting the cognitive behavior of
applying understanding has not significantly changed. This finding is surprising con-
sidering the tremendous effort devoted to the conceptual teaching of calculus since the
initiation of the calculus reform movement in the late 1980s.

Calculus reform initiatives have emphasized the importance of developing students’
reasoning with multiple representations. One would expect, then, that more recent
Calculus I exam items would require students to interpret information presented in a
particular representation (e.g., applied/modeling) and translate it to another (e.g.,
graphical). Table 13 provides the percent of exam items from the Calculus I final
exams from 1986/87 within various item representation categories.

8 We applied a two-proportion z-test for all sample proportion comparisons.

Table 10 Percentage of item representations within each category of the item orientation taxonomy

Item orientation Item representation (task) Item representation (solution) %

Remember Symbolic Symbolic 30.20

Definition Definition 27.76

Graphical Symbolic 21.63

Recall and apply procedure Symbolic Symbolic 78.98

Applied/modeling Symbolic 5.20

Graphical Symbolic 5.10

Understand Graphical Symbolic 20.00

Symbolic Explanation 13.33

Symbolic Symbolic 10.30

Definition Explanation 7.27

Applied/modeling Explanation 10.30

Apply understanding Applied/modeling Applied/modeling; Symbolic 65.18

Applied/modeling Symbolic 5.76

Symbolic Symbolic 5.50

Symbolic Definition 5.45
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Table 13 contrasts the percent of exam items from the 1986/87 sample within each
item representation category with those from our sample of 150 exams from 2010/11.
These data reveal that a higher percentage of items on the 1986/87 final exams were
stated symbolically and required students to interpret, represent, or manipulate symbols
in the solution than items in our initial sample. However, a higher percentage of items
on the exams from 1986/87 presented a physical or contextual situation and required
students to define the relationship between quantities. We illustrate a comparison of
item representations among exams from 1986/87 and our original sample in Fig. 10.

Discussion

In an effort to address high failure rates in college calculus, the calculus reform
movement in the United States initiated a number of instructional and curricular
innovations that sought to deepen students’ conceptual understanding of the course’s
foundational ideas (Ganter 2001). With this increase in conceptual focus, one might
expect that calculus exams would include more items that assess students’ understanding
and ability to apply the key concepts of calculus. Our analysis suggests this is not the case.

The following graph represents the graph of the derivative ′f  of a function f that is defined on 

the interval [-5, 6]. Using this graph, answer the following questions about the function f and the 

function f (x)dx∫ .  

Note: the empty circle represents a hole in the graph. 

(f) On what intervals is f decreasing? 

(g) On what intervals is f (x)dx∫  increasing? 

(h) On what intervals is f concave up? 

(i) What are the critical points of f (x)dx∫ ? 

(j) For the critical points identified in part (d), determine whether it is a local maximum, local 

minimum, or neither and explain your response. 

Fig. 9 Item stated graphically that elicits the cognitive behavior or understanding
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Our examination of 150 modern Calculus I final exams revealed that these exams
primarily assess students’ ability to recall and apply procedures; there is little focus on
assessing students’ understanding, with 85.21 % of the 3735 exam items being solvable
by simply retrieving rote knowledge from memory, or recalling and applying a
procedure. The Calculus I final exams in our sample rarely make use of real-world
contexts, seldom elicit explanation or justification, and provide few opportunities for

Table 12 Percentage of 1986/87
exam items within each item ori-
entation category

Item orientation 1986/87 (%) 2010/11 (%)

Remember 3.67 6.51

Recall and apply procedure 87.01 78.70

Understand 1.13 4.42

Apply understanding 8.19 10.30

Analyze 0 0.11

Evaluate 0 0

Create 0 0

Table 11 Percentage of item formats within each category of the item orientation taxonomy

Item orientation Item format %

Remember Short answer 62.04

Multiple choice 32.65

Multiple choice (explain) 3.27

Recall and apply procedure Short answer 86.87

Multiple choice 10.58

Short answer (explain) 1.16

Understand Short answer 36.97

Multiple choice 24.85

Short answer (explain) 15.15

Broad open-ended 13.94

Multiple choice (explain) 5.45

Multiple choice (justify) 1.82

Broad open-ended (explain) 1.21

Apply understanding Short answer (word problem) 56.28

Short answer 22.25

Short answer (explain) 7.59

Multiple choice (word problem) 3.93

Broad open-ended 3.66

Multiple choice 2.09

Short answer (justify) 1.83

Short answer (word problem/justify) 1.57
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students to demonstrate or apply their understanding. Of the 150 exams we coded,
90 % had 70 % or more of the exams’ items coded as Bremember^ or Brecall and apply
procedure.^ In contrast, only 2.67 % of the 150 exams had 40 % or more of the items
requiring students to demonstrate or apply understanding.
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Fig. 10 Comparison of item representations among exams from 1986/87 and our original sample. S:S
represents symbolic task representation and symbolic solution representation; A:A/S represents applied/
modeling task representation and applied/modeling and symbolic solution representation; G:S represents
graphical task representation and symbolic solution representation; S:G represents symbolic task representa-
tion and graphical solution representation; D:D represents definition task representation and definition solution
representation; T:S represents tabular task representation and symbolic solution representation

Table 13 Percentage of 1986/87 exam items within each item representation category

Item representation (task) Item representation (solution) 1986/87 (%) 2010/11 (%)

Symbolic Symbolic 74.01 65.45

Applied/modeling Applied/modeling; Symbolic 12.71 6.86

Symbolic Symbolic; Graphical 4.80 1.61

Graphical Symbolic 3.11 6.72

Definition Definition 1.69 1.90

Symbolic Graphical 1.13 2.01

Symbolic; Definition Symbolic 0.56 0.11

Tabular Symbolic 0.56 0.51

Symbolic Applied/modeling; Symbolic 0.28 0

Symbolic; Tabular; Graphical Symbolic 0.28 0

Graphical Graphical 0.28 0.88

Symbolic Symbolic; Tabular; Graphical 0.28 0

Symbolic Symbolic; Definition 0.28 0
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As a result of the low percentage of exam items at the Bunderstand^ or Bapply
understanding^ levels of the item orientation taxonomy, we conclude that a large
percentage of exam items failed to provide insight into how students understand the
concepts on which their computational or procedural work is based. Hence, these
results suggest that a large majority of Calculus I final exams being administered in
colleges and universities in the United States promote memorization of procedures for
answering specific problem types and do not encourage students to understand or apply
concepts of elementary calculus.

Our analysis further demonstrates that Calculus I final exams in U.S. colleges and
universities have changed very little in the past 25 years relative to the percentage of
exam items that require students to apply their understanding of foundational concepts.
Since final course exams commonly reflect the level of mastery and understanding
students have attained at the end of the course, these data suggest that the calculus
reform movement of the late 1980s has had little effect on what is being assessed in
current Calculus I courses in U.S. postsecondary institutions.

We also found that there exist inconsistencies between our characterization of post-
secondary Calculus I final exams and instructors’ perception of the nature of the exams
they administer to their students. Instructors’ report that their exams require students to
demonstrate and apply understandings. Our analyses revealed that a very high percent-
age of exam items focus on skills and methods for carrying out computations, while a
very low percentage of items prompt students to explain their thinking.

If exams are predominantly based on measures of low level cognitive behaviors such
as Bremember,^ or Brecall and apply procedure,^ students are likely to develop
perceptions about mathematics as not being about understanding and applying ideas
to solve novel problems. This focus on procedures has been reported to be uninteresting
to some more capable students who enjoy understanding and reasoning through non-
routine problems (Thompson et al. 2007).

We acknowledge that our discussion of this study’s main findings reveal the high
value we place on exam items that assess students’ understanding of foundational
calculus concepts, as well as their ability to apply these understandings to solve novel
problems. While we recognize the essential role of procedural fluency in calculus
assessment, our privileging of conceptual exam items derives from our own research
and from our review of the literature on students’ learning of ideas in introductory
calculus (e.g., Carlson and Rasmussen 2008). This research has revealed that Calculus I
students are generally not developing conceptual understanding of the course’s central
ideas, which affects the likelihood that they will succeed in calculus and courses
beyond calculus. Procedural fluency has its place in calculus assessment but as we
have shown, the relative frequencies of procedural and conceptual exam items has not
changed much in 25 years of calculus reform efforts. We believe that assessment
practices in introductory calculus should reflect the objectives for students’ learning
advocated in the mathematics education literature as well as those promoted by the
calculus reform movement.

We encourage Calculus I instructors and mathematics departments to contemplate
the role of their Calculus I final exams in developing students’ mathematical abilities,
and to consider whether their exams are supporting the development of students’
mathematical understandings and thinking. In many cases this might require depart-
ments to examine their Calculus I curriculum and instruction. Some might also find it
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useful to consult the mathematics education literature (e.g., Carlson and Rasmussen
2008) that discusses what is involved in understanding foundational calculus ideas, and
what studies have revealed about the process of understanding and learning to use these
ideas to solve novel problems. We also encourage the use of our Exam Characterization
Framework in pre-service teaching programs and graduate teaching assistant work-
shops as a didactic tool to assist teachers in constructing assessments that afford
students the opportunity to demonstrate their understanding.
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