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Network-Based Trajectory Analysis of a Precalculus Course

John O’Meara, Marilyn P. Carlson, Alan E. O’Bryan, and Ashwin Vaidya

ABSTRACT KEYWORDS
We employ a network theory mediated analysis to investigate the Precalculus; calculus;
affordances of a precalculus curriculum, exemplified by the Path- networks; trajectory

ways precalculus textbook and, in particular, its alignment with
the research-based Algebra and Precalculus Concept Readiness
Taxonomy (referred to as APCR). A network perspective of the
precalculus curriculum has been helpful in identifying key fea-
tures of the subject as they appear in several precalculus texts
including the one being studied here by Carlson et al.. Of these,
“hubs” have been particularly useful in mapping the alignment
between the preset goals of the precalculus course, as identified
in the previous literature, and its execution. Probabilistic tools,
such as cumulative distribution functions, prove to be effective in
analyzing the distribution and accumulation of precalculus con-
tent throughout the APCRand CCR. At the same time, this analysis
has also been valuable in identifying the trajectory of the text-
book curriculum in adequately preparing students for success in
calculus.

1. INTRODUCTION

Education - teaching and learning - is a complex system, with multiple evolving
parts in constant synergistic exchange. The goal of this exchange is the achievement
of an equilibrium state which can persist, despite perturbations from the environ-
ment. This is to suggest that when different parts of the education system are in
harmony then we see the emergence of new knowledge, which requires each player
in the process of education to morph and adapt in response to feedback [19,37].
While it is difficult to point to definitive strategies about what makes for ideal teach-
ing and learning, it is still possible to identify general characteristics of effective
instruction that have a degree of universal applicability. One such characteristic,
which has intuitive appeal, has reemerged under various guises in the form of “con-
nections”. In this paper, “connections” refer to the relationships between ideas, and
the paths taken to meaningfully navigate between and amongst these sources of
thought. This theme appears at the holistic level under the process philosophy [54],
systems theory [4], cybernetic theory [30,55], or the more recent connected cur-
riculum theory [22]. It also appears in recent calls by professional mathematics
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education organizations (MAA, AMS, etc.) that curricula and instruction empha-
size a coherent, connected approach to organizing courses [20,28,43]. In this paper,
we focus on a more specific case of connections, a local one, in the context of
calculus preparation.

The low overall international standing of US students in mathematics courses
has driven a significant amount of research on the efficacy of mathematics edu-
cation [46,52,53]. With a considerable focus on high school mathematics forging
a cumulative path toward higher-order mathematics in the form of precalculus
and/or calculus, math educators are rightly concerned about the adequacy of stu-
dent preparation for success in this course [9]. Reports on overall performance
in calculus are rather bleak [6,13]. According to Carlson and Diefenderfer [7],
“... only about 25% of students who start calculus and intend to take 3 semesters of
calculus go on to complete the calculus sequence ... ”. Recent efforts have resulted in
the development of assessment instruments such as the Precalculus Concept Assess-
ment (PCA), Algebra and Precalculus Concept Readiness (APCR) and the Calculus
Concept Readiness (CCR) assessments, based on a taxonomy which lists essential
reasoning abilities and understandings in algebra, precalculus, and other prerequi-
site concepts. These instruments are based on analysis and synthesis of the previous
decades’ research on student learning in calculus [12,32,38,39]. The purpose of this
paper is to investigate the effectiveness of the APCR and CCR recommended topics
and their alignment in creating an effective trajectory for success in calculus. The
approach adopted here is based on the network theory [47] and was introduced in a
recent paper [41], which uses the connectedness of concepts in precalculus courses
to mathematically assess the effectiveness of a curriculum as depicted by different
texts on the subject. Specifically, the analysis here examines the alignment between
the intended precalculus prerequisite and intended calculus curricula, mediated by
the enacted precalculus curriculum (EPC) analyzed through the lens of network
theory and probability theory. The underlying assumed mapping in this study is
that the precalculus is represented by the APCR taxonomy, the calculus by the CCR
taxonomy, and the EPC modeled by the Pathways precalculus textbook [10].

The choice of this text for the current study was based upon specific merits com-
pared to several other textbooks, as seen through the lens of network analysis in a
previous work [41]. This curriculum was also selected because one of its authors
is a co-author of this paper and was also the lead author of the CCR Taxonomy,
which helps us gain deep insights into both the precalculus and calculus segments of
this work. Furthermore, the Pathways program follows a research-based curriculum
which purports to be well designed to meet the needs of a calculus course, making
it a particularly interesting book for further investigation.

In this study, we define “intended curriculum” to be the composition of taxon-
omy principles, choice of textbook and its contents, and any other external sources
that influence the structure of the curriculum. The “enacted curriculum” acts as a
mapping from the intended curriculum into the reality of the classroom based on
interpretation and experiences of both the teacher and the students (see Figure 1).
This study does not examine empirical data from classrooms for the purposes of
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Figure 1. While intended curriculums ought to inform enacted curriculums in the form of classroom
teachings and practices, one can observe the same transfer between precalculus and calculus prepa-
ration. The stakeholders in this process would likely be the professional bodies that govern local and
national standards of education: the textbook authors, course coordinators, educators, administra-
tive officials, etc. All of these influencers play a significant role in the development of the intended
curriculum through genesis of taxonomic principles and choice of textbook. However, we acknowl-
edge this forms an inherently complex system further subject to the experiences and interpretations
of the teacher and classroom, making for diverse enacted curricula. This paper specifically focuses
on the alignment between successful execution of precalculus and calculus curricula, holding all
external factors equal otherwise for the sake of this particular study.

comparing intended and enacted curriculum. Therefore, we make the practical
choice of assuming that the enacted curriculum is exactly the intended curricu-
lum, i.e., to say the actual classroom pedagogical shifts are not considered and the
assumption is that the text alone serves as the guide for students. This assump-
tion allows us to compare the potential learning experiences for students using
each set of curriculum materials under ideal circumstances with minimum outside
supplementation. In making a distinction between intended and implemented cur-
ricula, our intention is to emphasize that, while good teachers do supplement their
course materials, the intended curriculum serves as the basis for the implemented
curriculum. It also often acts as the exact blueprint for teaching and learning for
inexperienced educators — which is not so uncommon in mathematics classes. It
has been shown that a teacher’s supplemental teaching methods in conjunction with
assigned readings have led to improved student experiences and outcomes [27,44].

While also not covered in the scope of this study, we assume that the intended cal-
culus curriculum can be represented with a subsequent calculus course’s assigned
textbook, chosen in a rigorous and meaningful manner outlined in the aforemen-
tioned network-based study. Interestingly, the use of networks to examine how ideas
of covariation in precalculus and calculus [51] are introduced and executed is both
intuitively meaningful and analytically practical.

The primary contributions of this paper lie in (a) providing a new approach
to aligning taxonomies to curriculum design through the use of network theory
methods and (b) analyzing the trajectory of a curriculum and to what extent it
aligns with subsequent courses. This is exemplified by examining the flow of ideas
between precalculus and calculus courses. Such an analysis is particularly signifi-
cant in mathematics (or STEM in general) which are prerequisite dependent. The
techniques introduced here appear complex, but once understood, their applica-
tion is both straightforward and worthwhile. The following sections of this paper
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provide both an overview of the mathematical methods and the details of the appli-
cation to mathematics education. We believe that such an analysis will be valuable
to a wide variety of scholars, instructors, curriculum designers, textbook compa-
nies, and even students. Due to the technicality of various concepts and topics that
appear throughout this study, we make use of several acronyms to streamline the
readability of this piece. A key to all acronyms that are used can be found in the
Appendix for reference.

2. MODEL OF PRECALCULUS CURRICULUM

O’Meara and Vaidya [41] employed a network model of precalculus to analyze sev-
eral textbooks on the subject. The network structure of this book arising from the
connections drawn between different topics discussed in the course formed the
basis for the opportunities that the books provided for “creative meaning-making”
by students, who could use the connections between topics to navigate complex
mathematical arguments. Specific network metrics such as the average path length
(APL), clustering coefficient (CC), degree distribution (DD), and hubs were found
to be particularly useful and relevant in identifying characteristics of a “good”
textbook conducive to an optimal learning environment.

2.1. Analytical Framework for Taxonomy-Textbook Trajectory

In this section, we lay out the theoretical framework for our study which is rooted
in a Network and Probability theory approach. Figure 2 summarizes the model
adopted here to understand the alignment between the ideal expectations of design-
ing a precalculus course as a precursor to calculus. This goal is captured by the
APCR and CCR taxonomies (where Pexj, refers to the mapping between the two tax-
onomies); however, the enactment of this goal is mediated by a curriculum which
extends the taxonomies into a rich and self-consistent story with longitudinal value.
We propose a three-step approach to assess the effectiveness of the curricular align-
ment: (i) Convert the curriculum (or textbook) into a network using the approach
outlined in Section 2.2; (ii) Map APCR to the curricular network (which we label
Py), and (iii) Map the curricular network to the CCR (labeled P,). We consider the
deviation, J, between Pexps the ideal path toward success in calculus, and P, P, the
empirical path that is stipulated and studied in this piece. While we are unable to
observe Peyp, we consider the observable successes of P, P1 and where there might
still be room for improvement. Additionally, we consider how these successes are
of practical use to precalculus educators. In the following sections, we explain each
of these modeling paradigms in further detail before exemplifying it via a specific
precalculus curriculum.

2.2. Network Representation of the Text

We define a network representation of a course textbook as an undirected graph
[47]. This graph’s nodes represent topics/concepts introduced in the text, and edges
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Figure 2. This schematic lays out the overall methodology of this work. The ideal goal of mapping
APCRto CCRis actualized by means of the text and the Network-Probabilistic methods employed here
which allow us to estimate the alignment between textbook design and theoretical expectations.
Each set of arrows between boxes represents a mapping that correlates the content between these
resources. We discuss the process of mapping the textbook into a network representation in Section
2.2, the mapping from the textbook network to the APCR in Section 3.1, the network to the CCR in
Section 3.2, and our approximation of the mapping from APCR to CCR in Section 3.3.

represent explicit connections formed between them. Textbooks were encoded into
network representations by two master’s students at the time (one of whom is now
an author of this manuscript) who would read the text section by section, construct
network representations independently, and then compare. After discussing and
confirming that the network’s information was derived strictly from the text with no
external nor implicit biases, students went on to construct networks for the entire
textbook. In the following paragraph, we describe the qualitative approach taken
by these two students to identify meaningful connections in several precalculus
textbooks.

Two topics/concepts are considered “connected” if there is an identifiable and
sufficiently strong intentional relationship between them in the text, i.e., the text
explicitly refers to one when introducing and/or discussing the other. For example,
consider the following line that might appear in a traditional precalculus textbook:
“One clear distinction that arises between the functions we have studied thus far
is that while a linear function exhibits a constant rate of change, an exponential
function exhibits a constant percent change”. The connections that can be observed
in this line are: (a) linear functions and rate of change, (b) linear functions and
exponential functions, (c) exponential functions and percent change, and (d) rate
of change and percent change. These connections are provided in Table 1.

Codes are then assigned for each topic/concept, and their edges are organized in
an array as in Table 1. This information is entered into a network visualization soft-
ware for deeper analysis and computation of relevant metrics. For a given textbook,
the “union graph” refers to the aggregation of all individual sections’ networks, as
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Table 1. Sample connections that might be formed amongst four
common topics in a given precalculus textbook. Adapted from

O’'Meara & Vaidya [41].

Introduced topic Directly connected topic
Linear Functions Rate of Change

Linear Functions Exponential Functions
Exponential Functions Percent Change

Rate of Change Percent Change

well as the networks of any other materials that are provided with the textbook, such
as a student handbook or online problem sets. More recent NLP-based approaches
allow for the creation of “knowledge graphs” from mathematics texts [29]. Such
methods will eventually need to be utilized to scale up the creation of curricular
networks for different mathematical topics.

One significant observation is that proximity is not enough for concepts to be
considered connected. For example, “Linear Functions” are not meaningfully con-
nected to “Percent Change”. While elements of this procedure are somewhat subjec-
tive, establishing validity between two students experienced in teaching precalculus
lent itself to a fairly closely aligned network representation of these textbooks. For
a more detailed discussion on the construction of these networks and the cal-
culation of metrics such as average path length and clustering coefficient, please
refer to O’Meara and Vaidya [41]. That work provides an in-depth analysis of nine
precalculus textbooks, of which three are shown below in Figure 3.

2.3. Network Metrics

With the textbook acting as a basis for the classroom’s enacted curriculum (EC),
these metrics are of particular interest to math educators, as their applications and
analogues to the classroom environment are able to provide a measure of the poten-
tial effectiveness of prospective learning goals. In a graph-based mapping such that
nodes represent introduced topics/concepts and unweighted, undirected edges rep-
resent both proximal and meaningful linguistic connections between topics, the
average path length can be thought of as the mean number of “steps”, or topics
that must be traversed to move from one given concept to another. The Clustering
coeflicient (CC) and Average path length (APL) are given by

Number of all triplets
CC= . (1)
Number of closed triplets
and
1
APL = —— d(vi, v; 2
n(n_l)% (vi> ) (2)

where n refers to the number of nodes, v; refers to vertex i, and d(v;,v)) is the
distance between any two vertices [3].
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Figure 3. A network representation of three distinct precalculus textbooks, including Abramson
et al. Precalculus [1] (top left), COMAP’s Precalculus: Modeling our World [16] (top center), & Carlson
etal. Precalculus: Pathways to Calculus: A Problem Solving Approach [10] textbook & student handbook
(top right), where nodes represent topics introduced in the text and edges represent connections
formed between topics. An enhancement of a portion of the network representation of the Path-
ways textbook is provided (bottom), showcasing the complexity of connections amongst topics (such
as “Limits” and “Function Notation”) in a text. This highlights the distinct ways in which meaning is
formed across various materials, even when intended to represent the same content area (in this
case, precalculus). It is reasonable to infer that the patterns exhibited in the materials for a course
necessarily influence both teaching and learning within the course.

The minimization of the APL metric and maximization of the CC metric indicate
a streamlining of content delivery. Because the clustering coefficient is a measure
whose codomain is on [0,1] that indicates how close a graph on 7 nodes is to the
complete graph K,, (where 1 indicates the input graph is a complete graph on all n
vertices), this highlights the extent to which a given text attempts to make all pos-
sible connections between every single topic. However, recent research indicates
that a computed metric approaching a value of 1 does not necessarily make for an
increasingly effective text [41]. Finally, hubs are defined to be nodes which contain
a degree of at least the minimum number of chapters covered in the collective sam-
ple of precalculus texts in the aforementioned study: in this particular study, the
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minimum requirement to be considered a hub happened to be a degree of 6. This
indicates the set of topics that are not only the most frequently introduced but also
the most highly connected. Therefore, a meaningful proportion of hubs is indicative
of establishing and reinforcing the most apparently important concepts throughout
the entire trajectory of the intended curriculum.

It is therefore our collective hypothesis that a text may be considered “effective” if
it retains a relatively low average path length, a relatively high clustering coefficient,
and whose hubs are not only provided in sufficient representation with respect to
the aggregate collection of curriculum topics, but also whose hubs are representative
of the overall learning goals of the current course. The relative magnitude of each
of these metrics is provided upon the basis of a union graph, in which all connec-
tions between all topics introduced across every sampled text is made, establishing
meaningful insight into how one ought to consider these metrics in a practical sense.
This may then be extended to represent the core prerequisite knowledge for future
courses scaffolded upon precalculus, of which preparation for calculus is among the
focal points of this investigation.

Based on a composite ranking of the texts, elicited by a specific set of crite-
ria selected by the authors, the Pathways curriculum appears to rank high among
prominent precalculus texts (see Table 2). The criteria include comparing each indi-
vidual text’s network profile to the union network! with respect to the APL, CC,
and proportion of hubs. A standardized error metric entitled the Composite Root
Mean Square Deviation (or RMSD in Table 2) was computed to form the rank-
ing system below. The metric chosen in this study is one of several that could be
selected upon the preferences of the educator, among other factors. However, the
assumption that an ideal model for enacted curriculum ought to closely resemble
the properties of a curriculum in which all possible connections from each sam-
pled book are formed serves as a highly meaningful basis for evaluating the efficacy
of the provided material and the choices made by those involved in its authorship,
publication, and execution.

2.4. Use of Probability Theory in Trajectory Analysis

When considering how content is distributed throughout a semester, a discussion
of the accumulation of content arises naturally when considering the teaching and
learning of mathematical content. Studying the distribution of accumulation is of
particular interest throughout many industries and environments. Studying the
accumulation and distribution of resources can be used to determine probabili-
ties of random variables that follow normal distributions [17], analysis of hazard

' The Union Network refers to the union of all the network representations of the eight textbooks mentioned in Table 2.
This collective representation can be treated as a case which contains the best features of all the individual texts and
deviations of each text network from the union network has been used to rank texts. Naturally, there is nothing abso-
lute about the choice of metrics used to assess the deviation which are dependent upon the preferences of the authors
and curriculum designers.
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Table 2. A composite list of all texts sampled in a network theory-based analysis [41] concerning
identification of trends among precalculus texts acting as frameworks for enacted curricula. Here, the
Composite RMSD is computed by squaring the differences in each text’s metric and the union graph’s
corresponding values, averaging these squared differences, and then taking the square root of this
average to normalize the deviations. This measure of error indicates to what extent each sampled text
forms the same quality of connections as the union graph on a domain of zero towards increasing
without bound.

Average local % Hubs (in relation
Average clustering to total number of Composite
Rank Title path length coefficient nodes) RMSD

1 Pathways (8th ed, 4,09 0.35 18.75 1.2989
Precalc: Pathways to
Calc, 2020)

2 COMAP (The 3.69 0.34 21.19 1.7228
Consortium for
Mathematics and its
Applications) —
(prelim ed, Precalc:
Modeling Our World,
2002 [16])

3 CME (Common Core) - 342 0.42 32.03 4.8429
(Precalc, 2008 [15])

4 Stewart (6th, Precalc: 3.36 0.04 15.00 5.1918
Math for Calc, 2012
[49])

5 Larson (Precalc: 3.69 0.16 14.63 5.3651
Functions and
Graphs — A Graphing
Approach, 3rd ed,
2000 [31])

6 Blitzer (5th ed, 2013, 3.77 0.05 12.33 6.6795
Precalc [5])

7 Faires (Precalc, 5th ed, 3.21 0.34 35.25 6.6892
2011 [21])

8 Gary Rockswold 341 0.28 11.76 7.0268
(Precalc: with
Modeling and
Visualization — a
Right Triangle
Approach, 4th ed,
2010 [42])

9 Abramson (OpenStax 19.00 0.27 11.54 10.7050
Precalc [1])

Union Graph 511 0.32 23.82 0

functions and portfolio management in finance [34], and disease progression in
medicine [24]. In the field of education, a probabilistic perspective can be taken to
compare the alignment between curricular plans and a teacher’s enacted lesson plan
[35] as well comparing empirical student performance to expected performance in
a mathematics course [36]. In each of these settings, their primary value comes
from assigning meaning to the accumulation of outcomes and their underlying
distribution as they accumulate.

Because accumulation and distribution of precalculus content are of particular
interest to us in this study, probabilistic methods are useful to compare the ways
in which the APCR and CCR incorporate essential precalculus content over time.
While many tools might be appropriate for analyzing accumulation of resources,
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we are primarily concerned with tools that indicate the density of relevant precal-
culus topics from the APCR into the precalculus textbook (Pj; see Figure 2) and
then from the textbook to the CCR (P,; see Figure 2). Analyzing such a trans-
fer of content across these three resources enables us to consider to what extent
students ideally prepared for success in calculus throughout this trajectory (Pexp;
see Figure 2). Density and accumulation of content (or topics) lead us to consider-
ing the extent to which the APCR and CCR align in their accumulation of content
deemed central for learning in precalculus. Such content can be meaningfully and
naturally represented as a cumulative distribution function, where the degree of
the hubs in the textbook is compared to the frequency with which these concepts
are stipulated throughout the APCR and the CCR. Although the presented order-
ing of the topics is arbitrary, this technique provides insight into the distribution
of topics across each resource and how well-represented these highly connected
topics are in the precalculus curriculum. We elaborate more on the underlying
assumptions and the process of defining our random variables and probability
mass functions using this probabilistic method in Section 3.1. In particular, we
highlight two essential concepts here: the Cumulative Distribution Function and
Quantile Plots.

Cumulative distribution functions (CDFs) are defined to output the probability
that a given random variable (e.g., X) is less than or equal to some value on the ran-
dom variable’s domain (e.g., x) [14]. When a random variable is discrete these might
be given the name “cumulative mass functions”, or CMFs, but the principle remains
the same. Essentially, CDFs describe how a random variable “picks up” probabili-
ties across its entire domain, yielding insight into the distribution of the probability
function with respect to the given random variable. While random variables are
often conflated with the traditional mathematical concept of randomness [17], we
use “random variable” according to its definition in traditional probability theory.
In this setting, a random variable refers to a function whose domain is the set of
possible outcomes in a sample space and whose range is a measurable space [23].
While random processes underlie the behavior of a random variable, we can take
this to mean that no single topic is expected to be weighted in any particular manner
other than its empirical distribution.

To measure the relationship between CDFs, we make use of quantile plots [2] to
measure the behavior of the CDFs at each quantile to determine how their align-
ments relate to one another over time. If two probability distributions have the same
CDEF, their quantile values will be identically distributed. If they vary with respect
to one another in any way, one can examine the quantile plot to determine pre-
cisely where in each of their distributions these deviations might occur. It is with
this method we are able to assess to what extent the APCR aligns with the textbook
as a basis for precalculus curricula and to what extent the textbook then aligns with
the CCR. If the quantile plots reveal nearly identical behavior, we conclude that the
distributions are nearly identical and thus there is a high degree of cohesion and
transfer of knowledge across these resources as a pathway toward student learning
of precalculus and success in calculus.
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3. APPLICATION TO A PRECALCULUS CURRICULUM

In this section, we employ the theory introduced in Section 2 to bear upon a specific
precalculus curriculum. Each section takes up specific mappings — P; and P, and
Pexp, introduced in Figure 2 and the key findings from our analysis are discussed in
detail.

3.1. APCR Taxonomy and Precalculus Curricular Network (Mapping P,)

While math placement tests have been used in the United States for several decades
now, often skills assessed in such tests are somewhat disconnected from the essential
needs of Calculus [32]. Recent research [12,38,39] has highlighted the importance
of conceptual reasoning, alongside quantitative skills as being a prerequisite for suc-
cess in upper level calculus courses. In recent times, many professional mathematics
education organizations (MAA, AMS, etc.) are calling for a shift away from isolated
skills and toward coherence, conceptual understanding, and deep engagement with
mathematics [20,28,43].

The Algebra and Precalculus Concept Readiness Taxonomy (APCR) compiles
a list of concepts which are essential for success in a precalculus course, heavily
sourced from the Precalculus Concept Assessment (PCA) tool [11]. Such concepts
are formed upon the basis of an analysis of the vast body of literature on learning
calculus from the decades prior to the creation of these taxonomies. In particular,
studies show that high performance on PCA-based assessment in students corre-
lates highly with future success in calculus courses [11]. These include: Quantitative
Reasoning (QR), Proportional Reasoning (PR), Covariational Reasoning (CR),
Variable Reasoning (VR), Function Reasoning (FR), Computational Abilities (CA),
Reasoning with Representations (RR), Notations, Conventions, and Definitions
(NCD), Modeling (Mod), Measurement (Msm), Rate of Change (Rate), Function
Concepts (FC), Solving Equations (SolEq), Inequalities (Ineq), and Properties of
Reals (PptyReals).

Mathematics educators make a significant case for repetition and intra-topic con-
nection as highly significant features at the forefront of educational efficacy [25,56].
With this assumption in mind, an effective text (such as Precalculus: Pathways to
Calculus [10]) ought to remain well-aligned between its initial taxonomical goals
and its most highly featured and repeated topics introduced throughout the curricu-
lum, as indicated by the presence of hubs. Based on the description of the goals in
the APCR, identified hubs in the Pathways text, for instance, can be aligned with the
APCR based on either direct linguistic proximity or by indirect connotative prox-
imity of related ideas, which has proven to be an effective method of determining
student and curriculum success [45]. The relational mapping between the Pathways
course materials and the APCR is represented visually by the Sankey diagram in
Figure 4.

One meaningful question to consider in this research effort is, how ought we to
consider the alignment between taxonomical principles and the prevalence of such
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Constant Rate of Change
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Figure 4. A Sankey Diagram displaying the representation of the APCR taxonomy (left) through the
highly connected topics present in the Pathways textbook and accompanying student handbook
(right). The text and handbook were synthesized via a union of their individual graphs, in which the
union combines all connections made between the two sources to simulate the potential classroom
experience for both teacher and student body.

related goals that appear in the textbook? An initial assumption we make is that the
relation between the two be as directly translated as possible so that the taxonomy is
fully and significantly represented in the enactment of the course content (thus rep-
resenting the ideal potential scenario). To meaningfully assess the extent to which
a bijection between the taxonomy and the EC is achieved, we assume the under-
lying and ideal distribution of the APCR is indicated by the density of sub-topics
introduced. That is, on the empirical list of the taxonomy goals, there are indicated
sub-goals to be accomplished within the scope of the overall concept. For example,
the QR concept goal includes ten listed sub-goals.

By this observation, we can then assign relative weights to each overarching goal
of the taxonomy based on the number of subtopics plus the goal itself. Thus Quan-
titative Reasoning has a relative weight of 10+ 1 = 11 (where 10 represents the
number of subtopics as shown in Table 3 and 1 represents the topic itself), and a goal
with no subtopics such as Proportional Reasoning has a relative weight of 1 + 0 = 1.
We can then assign an empirical discrete probability distribution to the APCR
where, while ordering of goals is somewhat arbitrary, we can assume the order in
which they appear in [11] is the official ordering of the data. From this schema, we
can determine the corresponding probability mass function (PMF) and cumulative
density function (CDF) of the APCR. We make the assumption that W is a discrete
random variable measuring the relative weight or “importance” of a given taxon-
omy goal. The PMF is then indicated by the probability that W obtains any value
between one and the maximum empirical weight observed, denoted P(W = w).
Similarly, the CDF is the probability that an observed W is less than or equal to the
weight of an indicated value, denoted P(W <w). This data is indicated in Table 4.
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Table 3. Description of sub-goals of the QR concept as outlined in the APCR [11].
In the APCR, taxonomic goals such as QR (Quantitative Reasoning) are provided as
an overarching indicator of student preparation for precalculus, while each of the
sub-goals (as listed in the table for QR) are specific measures of student actions in
pursuit of meeting this developmental goal.

Taxonomy sub-goal Description of sub-goal

QR-C Conceptualizing a given quantity entails attending to both the object
and measurable attribute of a quantity already made explicit in a
situation

QR-l Introducing and using a new quantity entails identifying a measurable
attribute of an object in a situation that was not previously explicit

QR-R Relating quantities entails identifying a relationship between the

measures of two or more quantities in a situation as the values of the
two quantities vary together

QR-RF Representing a quantitative relationship with a formula

QR-RG Representing a quantitative relationship with a graph

QR-0 Performing a quantitative operation entails combining two or more
quantities to form a new quantity

QR-IF Interpreting a quantitative relationship represented by a formula

QR-IG Interpreting a quantitative relationship represented by a graph

QR-VF Viewing a formula as a means of relating the values of two quantities

QR-VG Viewing a graph as a means of relating the values of two quantities

Table 4. APCR goals with empirical weights, PMF values, and CDF values. Note
that 221 W; = 43 where W; refers to the APCR weights. These weights are used
to assess how many sub-goals are assigned to each overarching taxonomic goal.
The role of probability in this analysis is to assess how these goals accumulate over
time as students learn and prepare for precalculus, which is then correlated to the
representation of hubs in the course textbook.

APCR goal Weights, W (subtopics

name plus one) PIW = w) P(W<w)
QR 1 11/43 11/43
PR 1 1/43 12/43
CR 1 1/43 13/43
VR 5 5/43 18/43
FR 3 3/43 21/43
CA 1 1/43 22/43
RR 6 6/43 28/43
NCD 1 1/43 29/43
Mod 3 3/43 32/43
Msm 1 1/43 33/43
Rate 3 3/43 36/43
F 4 4/43 40/43
SolEq 1 1/43 41/43
Ineq 1 1/43 42/43
PptyReals 1 1/43 43/43

We can now meaningfully assess the success of the translation of the APCR from
taxonomy to textbook by performing a similar analysis on the frequency with which
hubs from the text are categorized amongst each APCR goal. Rather than aim for
exact alignment of weights, the goal of this comparison is to assess the magnitude of
the Probability Mass Function and Cumulative Density Function of the relationship
between taxonomy goals and related textbook hubs, as derived from direct encoding
of course materials. Hubs from the textbook were assigned to an APCR goal if they
were mentioned in the taxonomy’s goal itself.
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Table 5. APCR goals with empirical hub degree weights, PMF values, and CDF val-
ues. Note that Z}; H; = 826 where H; refers to the hub degree weights. These
weights are used in order to assess how many sub-goals are assigned to each over-
arching taxonomic goal. The role of probability in this analysis is to assess how these
goals accumulate over time as students learn and prepare for precalculus, which is
then correlated to the representation of hubs in the course textbook.

APCR goal Hub density

name weights, H P(H = h) P(H<h)
QR 35 35/826 35/826
PR 113 113/826 148/826
CR 138 138/826 286/826
VR 41 41/826 327/826
FR 61 61/826 388/826
CA 37 37/826 425/826
RR 26 26/826 451/826
NCD 75 75/826 526/826
Mod 83 83/826 609/826
Msm 38 38/826 647/826
Rate 38 38/826 685/826
F 55 55/826 740/826
SolEq 22 22/826 762/826
Ineq 28 28/826 790/826
PptyReals 36 36/826 826/826

By the same method as displayed in Table 3, the weights of the alignment between
the APCR and the hubs from the precalculus text are determined by the sum of the
degrees of the hubs that correspond to each listed APCR goal. These hub weights
are given in Table 5.

Upon establishment of these empirical distributions, the taxonomy and hub
alignment were analyzed via a quantile plot comparison to assess the distribution
of the density of hubs with respect to outlined goals. Furthermore, the Cumula-
tive Density Functions of both distributions were plotted against one another to
examine how the two representations of knowledge trajectories accumulate over
the course of the listed APCR. A Pearson correlation test was conducted between
their Cumulative Density Functions, uncovering an R? value of 0.9612. While there
appears to be a relatively moderate concentration in the lowest quantile of the func-
tion, this is to be expected, as the weight of the first listed APCR goal (Quantitative
Reasoning) is the largest in the taxonomy and of significant magnitude in the sum of
hub degree from the textbook. In conjunction with the relative linearity of the quan-
tile plots, this indicates that the two follow similar distributions and thus maintain
a highly significant level of alignment.

Perhaps the most meaningful result of this analysis is that the moments in which
misalignment occurs between the two exhibits a greater representation of impor-
tance in the taxonomy instead of in the execution of the density of hubs with respect
to the APCR. This is of great significance because this informs us that these course
goals are apparently underrepresented in the curriculum. If these goals are to be
considered of greater importance due to their higher level of detail/attention as
indicated by a greater number of sub goals, an underrepresentation implies that
these goals may not have been communicated to their greatest potential through
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Figure 5. Quantile plots and assessment of correlation between APCR taxonomy components and
hubs present in course materials. These quantile plots allow us to analyze to what extent the hubs
of the textbook and the APCR align with one another as the materials accumulate over time. Devi-
ations from the line y = x indicate periods in which misalignment occurs (left), which can then be
analyzed using coefficients of determination (right) to explore to what extent alignment is achieved
and illuminate opportunities forimprovement.

the course materials, possibly causing a greater gap between a student’s desired
understanding of precalculus concepts and/or their potential to inform and com-
prehend calculus concepts. The specific taxonomic components in which this is
observed are: Quantitative Reasoning, Rational Reasoning, and Inequalities, with
a slight over-representation in the textbook of Covariational Reasoning. However,
we may assume that over-representation is not necessarily an issue in such an analy-
sis, as extra attention might be paid to certain concepts in the classroom to facilitate
individualized learning goals, as long as it does not detract from other such goals.
These results are visually represented in Figure 5.

In light of these moments of misalignment between APCR and representation in
the course materials, the creators of the taxonomy note the following with respect
to its creation and implementation [7]:

(1) The APCR was created by a committee without the same level of years-
long validation that PCA experienced. This can skew the distribution of
topics to not necessarily reflect their relative importance to succeeding in
calculus.

(2) Some topics (such as covariational reasoning) can be difficult to assess, and as a
result are sometimes incidentally underrepresented in assessments (in the case
of CR, the static nature of the assessment contributes to this). This can cause a
disconnect between prevalence in the curriculum and the assessment.

(3) Since students have received largely incoherent, ineffective instruction up
to this point in their educational careers, some topics might need addi-
tional weight within curriculum materials to scaffold student success with
the remaining topics in the course, causing some mismatch with comparing
representations.
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Figure 6. Sankey diagram outlining the representation of CCR taxonomy goals (right) within the
hubs present in Pathways precalculus textbook and student handbook (left).

These considerations are excellent reminders that the classroom experience is
highly qualitative and subjective, with many traits that are difficult to capture in
a mathematical analysis. Observing intended and enacted curriculum alignment
through a quantitative lens may yield highly valuable insights that motivate refine-
ment and reform in the classroom, although complex systems exhibit many facets of
unpredictable behavior that require thorough consideration on all analytical levels.

3.2. Mapping PCN to CCR (Mapping P>)

The Calculus Concept Readiness (CCR) Taxonomy provides a description of rea-
soning abilities and understandings associated with precalculus ideas that students’
success in calculus. Among these are markedly broad learning goals that are rein-
forced by significant documentation that current math education research indicates
as essential for the learning of key calculus concepts [8]. The particular abilities
outlined in the CCR Taxonomy include Reasoning Abilities (R), Understanding of
concepts of quantity and function (U), Understanding of representations and inter-
pretations of function growth patterns (G), Understanding of central ideas from
trigonometry (T), and miscellaneous other abilities that involve using algebraic
skills to determine values of one quantity in a function relationship, when values
of the other are known (A).

Based on the descriptions of each taxonomy goal in the CCR, the hubs derived
from the Pathways text were mapped according to the schema outlined in alignment
between the APCR and the text. One ought to note that the mappings need not be
one to one in either the APCR or the CCR, as topics may be applicable to several
different learning goals simultaneously. A Sankey plot of the alignment between the
text and the CCR is displayed in Figure 6.
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Table 6. CCR goals with empirical weights, PMF values, and CDF values. Note that
Z,L Vi = 29 where V; refers to the CCR weights. These weights are used in order
to assess how many sub-goals are assigned to each overarching goal in the CCR.
The role of probability in this analysis is to assess how these goals accumulate over
time as students learn precalculus in the curriculum, which is then correlated to the
representation of these hubs in the CCR as they prepare for their studies in calculus.

CCR goal Weights, V (subtopics

name plus one) PV =v) P(V<v)
R 4 4/29 4/29
u 8 8/29 12/29
G 6 6/29 18/29
T 5 5/29 23/29
A 6 6/29 29/29

Table 7. CCR goals with empirical hub degree weights, PMF values, and CDF values.
Note that Z,-S=1 Ji = 304 where J; refers to the hub degree weights. These weights
are used in order to assess how many sub-goals are assigned to each overarching
goal in the CCR. The role of probability in this analysis is to assess how these goals
accumulate over time as students learn precalculus in the curriculum, which is then
correlated to the representation of these hubs in the CCR as they prepare for their
studies in calculus.

Hub density
CCR goal name weights, J PU =) PU<))
R 49 49/304 49/304
u 69 69/304 118/304
G 75 75/304 193/304
T 95 95/304 288/304
A 16 16/304 304/304

By the same methodology that was applied in Section 3.1, we can determine the
distributions independent of each other and seek whether or not there exists a cor-
relation between the densities of the two. The empirical distribution of goals in the
CCR can be found in Table 6, and the density of hubs in each learning goal are given
in Table 7:

As can be observed in the figures below, there is a high level of alignment achieved
between the representation of identified necessary calculus concepts in the course
materials, and the relative importance of such concepts as listed in the CCR. The
only taxonomy goal in which CCR representation exceeds textbook density is in the
understanding of specific concepts involving the idea of quantity and function-related
concepts (U), which is highly oriented around the understanding of representations
of quantities and analyzing function relations between specified variables and/or
constants.

The important distinction to be made is that this observation, as is also true in
the APCR analysis, simply indicates that these topics in the textbook do not have as
high a level of connectivity to other concepts in the coursework as is indicated by
the relative representation of the taxonomy. The overarching recommendation to be
made on this observation is that, if the CCR is assumed to be the ideal “checklist”
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Figure 7. Quantile plots and assessment of correlation between CCR taxonomy goals and hubs
present in course materials. These quantile plots allow us to analyze to what extent the hubs of the
textbook and the CCR align with one another as the materials accumulate over time. Deviations from
theliney = xindicate periods in which misalignment occurs (left), which can then be analyzed using
coefficients of determination (right) to explore to what extent alignment is achieved and illuminate
opportunities for improvement.

for information and knowledge requirements to bring to calculus from precalcu-
lus, then an increased emphasis in the course materials ought to be placed on such
concepts throughout the entire trajectory of the course. How this can be achieved
is often complimented and decided by individual educators in the context of their
teachings in pursuit of a greater degree of adaptive and consistent, desirable teach-
ing practices well-aligned with the philosophy of the Pathways materials. It is this
philosophy in which covariational reasoning and connected curriculum practices
are placed at the forefront of instructional methods to meet essential research-based
taxonomies, yielding successful transitional phases between courses for students.

The quantile plot and correlation between the CCR and hub density are given in
Figure 7.

One additional noteworthy observation is that, according to the descriptions
provided in the CCR, there are two hubs present in the Pathways text that do not
appear to align with any of the given goals. These hubs are “Roots and End Behav-
ior” (R&EB) and “Limits” (LIM). R&EB describes the process of identifying the
x-intercepts (often synonymously labeled “roots”, “solutions”, “zeros”, etc.) in poly-
nomial functions, rational functions, and many other classes of functions studied
in a typical precalculus course. Roots & End Behavior also includes the notion of
studying how a function’s output responds to allowing the input to tend towards
extreme positive (+00) or negative (—oo) values. This idea can be restated as, As
our input x increases without bound, what does our function’s output f(x) tend
towards? Symbolically, (x = +00) = (f(x) — L), where “L” represents the value
that f(x) approaches. LIM is a direct extension of this idea; the “limit” of a function
can be related to the end behavior of a function in the following definition: The limit
as the input x of a function f(x) is equal to L if and only if, as x approaches some
value a (where a is assumed to be a real number or positive/negative infinity), f(x)
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approaches L. In the context of symbolic mathematical notation, we can express this
definition as

lim f(x) = L& [(x > @) = (f(x) > D)),

These two concepts are inherently foundational to the understanding and execution
of calculus at any level. While similar studies corroborate and validate the inclusion
of these two concepts [48], the presence of these topics can be found in the first chap-
ter of most popular calculus textbooks, dating well back to the eighteenth century
and throughout the twentieth century and beyond [26,33,50].

3.3. The Aggregate Map from APCR to CCR (Mapping and Interpreting P> P)

While there are certainly many possible approaches to handling this observation,
one possible solution might be to include additional taxonomy goals that highlight
the necessity of highlighting these concepts in the precalculus classroom. This will
ensure that students are well-prepared for the use of these foundational ideas in
their future courses, whether that be restricted to calculus or beyond. Presenting
taxonomies to educators of courses can ensure that courses will be taught in such
a way that the transition between courses be as streamlined as possible. This also
eases the consistent strain that exists on educators to refresh the student body on
prerequisite knowledge.

While Pey;, is an idealized optimal path by which the transfer of knowledge flows
from the expectations before (APCR) and after (CCR) successful completion of pre-
calculus, we gain insight into one potential representation of its structure, with some
tolerance of error d, via our composed mapping P,P; in Figure 8.

This visual representation of the transfer of knowledge through a precalcu-
lus course yields several meaningful insights. First, we see that “Roots and End
Behavior” and “Limits” are both densely represented in the APCR, but are not stip-
ulated amongst any of the five CCR categories. In fact, many topics’ hub density
weights drop off dramatically upon transfer from APCR to CCR. There are notable
exceptions to this trend (e.g., “Proportions”, “Angle Measure”, etc.); however, it is
interesting to note such significant representation of frontloading of precalculus
content relative to how it might be valued when considering one’s readiness for
calculus. Second, this allows one to trace the lineage of any highly connected topic
in this particular precalculus textbook. This is valuable to both educators and cur-
riculum designers with respect to how support in courses before or after precalculus
emphasize particular concepts to ensure alignment within any sequence of math
courses. Third, showcasing hub density weights by thickness allows one to imme-
diately note which topics ought to be recurring throughout the course to ensure
strong alignment with the goals of given curricular materials. For example, if one
were to teach by the values of this particular set of curricular resources, “Sine” and
“Cosine” stand out as topics with particularly high density as they transfer into the
CCR. For a precalculus instructor, this could serve as a self-check to ensure strong
development of these concepts by consistently connecting them to various other
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Figure 8. Avisual representation of the “flow” or “transfer” of intention to enactment across curricu-
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onboarding into calculus. Widths of each flow line indicate the magnitude of hub density weights for
the APCR and CCR.

concepts in the curriculum. These outcomes, among others that might be observed
through this representation, provide a tangible asset to the precalculus teaching and
learning community.

4. DISCUSSION

Effective mathematics learning involves making meaningful connections between
mathematical topics and ties between mathematics and other disciplines, which
includes connections with the individual’s everyday life [18]. Network theory and
analysis provides us with a rigorous approach to examine these qualities in a text-
book; the novelty of this paper lies in the identification and demonstration of this
mathematical tool in an educational context. Probability theory has been employed
as an additional tool to examine the degree of alignment of the structured transfer
of knowledge from taxonomical goals to the curricular materials. The language of
quantile plots and cumulative distribution functions have allowed us to examine
pointwise how taxonomical principles are represented in the hubs of the curricu-
lum, as well as consider to what extent these materials are correlated to one another
in terms of their given weights. A strict network analysis alone would not have suf-
ficed here because the APCR and CCR do not lend themselves to the same lens
of network analysis as the curriculum. Our confirmation of the alignment between
the APCR, curriculum, and CCR stems from our use of quantile plots and an exam-
ination of the correlation between the development of these topics in precalculus.
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While we found the transfer of information across these sources to be effective over-
all, we do see a need for further developments in the areas of Limits and Roots &
End Behavior.

An immediate value of the network approach outlined here to educators can be
seen from the “hubs” or density of specific topics in Figure 8. These hubs underscore
the repeated significance of topics such as functions (F), covariation (CR), model-
ing (Mod), proportions (PR), etc., which are all essential to understanding various
concepts in precalculus. We recommend the readers to an earlier paper [41] which
elaborates on the outcomes of applying a network-based approach to various texts
on precalculus, which are also highlighted in Table 2, including a list of hubs in dif-
ferent texts. While there are some topics that appear in the set of hubs that are either
under-represented in the APCR and/or CCR, or do not retain any direct alignment
in the CCR, this affords the opportunity for the educator to develop these concepts
further in the pursuit of preparing students for studies in calculus and beyond.

In light of this analysis, we suggest adjustment of connectivity and repetition
throughout the precalculus course to ensure that the completion of precalculus
aligns optimally with the initiation of calculus. A major consequence of this study
is that the prevalence of these amended qualities should provide the student and
curricular environment with a sense of continuity throughout their studies. This
in turn can reinforce individual meaning-making while laying the blueprint for
a methodical process by which educators can refine their classroom practices to
either supplement or better align with the given curricular materials and underlying
learning goals.

For the author of the textbook that guides a course, this heavy lifting is impor-
tant because you are laying out the basis for all teaching and learning that stems
from this resource. While underlying taxonomic hierarchies might not be a com-
mon approach taken by most textbook authors, it is one that is worth considering to
ensure the efficiency by which students master content and prepare for consequent
coursework.

In practice, to alleviate the burden of heavy computation, practitioners can
implement this approach by considering what students should know coming in to
precalculus, what they should know entering calculus, and have students construct
concept maps and analyze degree distribution to consider what concepts are not
being effectively transferred for them, allowing opportunity for intervention. The
suggested tools to analyze curricular alignment can also be more informally utilized
on smaller scales. Students could be asked to solve specific problems while being
asked to reflect on (and demonstrate) connections between specific fundamental
principles and concepts of the courses highlighted in the APCR and/or CCR.

5. CONCLUSION

It is worth noting that while the current paper specifically focuses on precalculus
and its trajectory, the network-based approach employed here is broad in scope
and can be put to the test to examine the structure and evolution of any program in
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math, science or beyond. The outcomes of this study should have wide applicability
and value to research scholars, research-based practitioners, curriculum designers,
and all those who teach precalculus and/or within the calculus sequence. However,
the extensions of this work can have an even wider appeal, across disciplines and
while the approach is technical, the effort is well worth the time spent learning
the details of the computation whose results can have value to teachers and stu-
dents alike. While this work is not directly written for students, it has inspired other
student-learning focused work which is the subject of an upcoming paper. [40].
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APPENDIX

Provided below is a quick reference to acronyms used in the paper.

PCA - Precalculus Concept Assessment

APCR - Algebra and Precalculus Concept Readiness
CCR - Calculus Concept Readiness

IPC - Intended Precalculus prerequisite Curricula
ICC - Intended Calculus prerequisite Curricula
EPC - Enacted Precalculus Curriculum

APL - Average Path Length

CC - Clustering Coefficient

DD - Degree Distribution

RMSD - Root Mean Square Deviation

PCN - Precalculus Curricular Network

CCR - Calculus Concept Readiness

PCA - Precalculus Concept Assessment

QR - Quantitative Reasoning

PR - Proportional Reasoning

CR - Covariational Reasoning

VR - Variable Reasoning

FR - Function Reasoning

CA - Computational Abilities

RR - Reasoning with Representations

NCD - Notations, Conventions, and Definitions
Mod - Modeling
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Msm - Measurement

Rate - Rate of Change

FC - Function Concepts

SolEq - Solving Equations
Ineq - Inequalities

PptyReals — Properties of Reals
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