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This comparative study examines three groups of high school students’ understanding of the 
foundational concepts needed for calculus. Students completed one of three courses: (1) 
traditional precalculus, (2) novel precalculus, or (3) Advanced Placement (AP) Calculus AB. 
Student scores on the Precalculus Concept Assessment (PCA) and two open-ended tasks which 
focused on functions and rate of change provided the data. Student work was analyzed for 
strategies employed and efficiencies with their strategies on the two tasks. The results revealed 
that students who completed the novel precalculus curriculum gained a deeper understanding of 
the fundamental concepts for calculus by performing higher than the traditional precalculus 
students and comparably to the AP Calculus AB students. 
 

Introduction 
Precalculus is a mathematics course offered in high schools across the United States with 

approximately 18.5% of all high school students enrolling during their third or fourth year of 
high school. Yet a growing student population is required to enroll in precalculus when they 
enter college because they either did not complete it in high school, but more often students do 
not score high enough on the individual college mathematics placement exams and therefore are 
required to enroll in a course they may have completed during high school. Parents, students and 
educators are asking: (1) What are students not learning in high school precalculus that is 
causing them to have to retake the course when they enter college and (2) What mathematics 
content is missing from the high school precalculus curriculum that could help students better 
prepare to enter college calculus?  

Over the past 20 years researchers have focused on college students understanding of 
function and the different reasoning patterns they need to be successful in higher level 
mathematics, such as calculus (Breidenbach, Dubinsky, Hawks, & Nichols, 1992; Carlson, 1998; 
Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Carlson & Oehrtman, 2005; Engelke, Oehrtman, & 
Carlson, 2005, October; Ferrini-Mundy & Gaudard, 1992; Ferrini-Mundy & Graham, 1991, 
1994; Markovits, Eylon, & Bruckheimer, 1988; David Tall, 1992; David  Tall, 1997; Thompson, 
1994a, 1994b). However, less research has been conducted at the high school level to understand 
what secondary students who are enrolled in precalculus understand or do not understand about 
function and if the reasoning patterns and frameworks used for undergraduate students can or 
should be applied to high school precalculus students. Therefore, in this study we seek to answer 
the following two research questions: (1) How do high school precalculus students who used 
either a traditional precalculus curriculum or a research based conceptually–oriented curriculum 
compare on the foundational concepts needed for calculus and their efficiency and use of 
mathematical strategies? (2) How do high school precalculus students who completed a 
conceptually-oriented curriculum compare with AP Calculus AB students on the foundational 
concepts needed for calculus and their efficiency and use of mathematical strategies? 

 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

778



Theoretical Framework 
The concept of function is an essential knowledge students need to be successful in higher 

level mathematics. For students to understand the concept of function they must first obtain a 
process view of function (Breidenbach et al., 1992), meaning they understand that they are 
mapping a set of input values to a set of output values and it is a continuum. Second, students 
must develop covariational reasoning (Carlson, 1998), described as “the cognitive activities 
involved in coordinating two varying quantities while attending to the ways in which they 
change in relation to each other” (Carlson et al., 2002, p. 354).  

Typically precalculus teachers and the curriculum they use focus student attention on 
learning the algebraic manipulations and procedures rather than the conceptual understanding of 
function that provides foundational knowledge needed to build on for  studying higher level 
mathematics. Breidenback et al. (1992) and Dubinsky and Harel (1992) described two views of 
functions students have: action or process. An action view of function is described as “the ability 
to plug numbers into an algebraic expression and calculate” (Dubinsky & Harel, 1992, p. 85). 
Students tend to think about the function in a procedural way as they input a value into a specific 
function to calculate the correct output doing “plug and chug” without any conceptual 
understanding of function which may eventually hinder their understanding of calculus concepts 
such as limit, derivative, and integrals.  

Carlson and Oehrtman (2005) extended Breidenbach et al. (1992) and Dubinsky and Harel’s 
(1992) research on the action and process views students have of function arguing that student’s 
ability to answer function focused tasks was related to two types of reasoning.  

First, … students must develop an understanding of functions as general processes that 
accept input and produce output. Second, they must be able to attend to both the changing 
value of output and rate of its change as the independent variable is varied through an 
interval in the domain. (Oehrtman, Carlson, & Thompson, 2008, p. 5) 

For example, students who hold an action view of function have multiple misconceptions about 
piecewise functions being several functions and do not reason over an entire interval. Students 
tend to focus on specific points instead of interpreting the entire function. They also tend to not 
relate the domain and range to the inputs and outputs of the function. Without an understanding 
of functions accepting inputs and producing outputs students will struggle to reverse (inverse 
functions) the process. Most students are able to find the inverse of a function algebraically 
(switch the x and y and solve for the y variable) or geometrically (reflect the function over the 
line y = x); however, their answer typically has no meaning (Carlson & Oehrtman, 2005). 
Students who hold an action view are able to work with functions procedurally, but have little 
conceptual understanding. 

On the other hand, students who hold a process view of function can imagine an entire 
function and how the input values affected the output values. This is described as covariational 
reasoning, the ability to vary inputs and outputs at the same time and interpret or understand their 
influence on the rate of change. Students who demonstrate a process view of inverse functions 
use a reversal process that defines a mapping of output values to input values. A process view of 
function is essential for understanding calculus concepts such as the limit, derivative, and 
integral. 

Carlson, Oehrtman, and Engelke (2010) developed a taxonomy of foundational knowledge 
for beginning calculus representing the key concepts of precalculus students should know and 
understand prior to entering calculus. The PCA taxonomy was used to develop the Precalculus 
Concept Assessment (PCA), a 25 multiple–choice item exam that assesses rate of change, 
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function, and covariational reasoning that students will build upon in their study of calculus. The 
PCA and PCA taxonomy have gone through multiple refinements as research on student thinking 
is conducted (Carlson et al., 2010). Although the details of the PCA taxonomy  are not part of 
this paper it is imperative to note that the existence of such a taxonomy is one of the reasons why 
the PCA is a valid tool for assessing students understanding of the foundational concepts of 
precalculus prior to entering calculus.  

The PCA was developed over a 15 year time period based on numerous college students’ 
interviews of what they thought and understood as they answered open–ended questions about 
functions. The distracters on the PCA are common misconceptions that college students have 
about functions (Carlson et al., 2010). More recently, the PCA was used by high school 
precalculus teachers to determine their students’ understandings and misconceptions after 
completing the year long course and entering AP calculus (Teuscher, 2008). These data were 
influential in helping teachers discover holes in their mathematics curriculum and making 
changes to help students develop the key precalculus concepts prior to entering calculus. 

 
Methods 

In this study we examined high school students’ understanding of the foundational concepts 
of calculus as described by the PCA and two open–ended tasks focused on rate of change. We 
coded students’ strategies in solving these tasks and compared their efficiency in using the 
strategies. In this section we describe the instruments and participants. 
Precalculus Concept Assessment 

The PCA was developed by faculty from the Department of Mathematics at Arizona State 
University and was designed to reflect core content and common misconceptions students have 
about functions (Carlson et al., 2010). Carlson et al. (2010) administered the PCA to 902 college 
precalculus students and found the “Cronbach’s alpha of 0.73 indicating a high degree of overall 
coherence” (p. 137). Carlson and colleagues also conducted clinical interviews with more than 
150 college students so as to validate the PCA items. Each question was tested and validated to 
guarantee that students who selected a specific distracter (i.e., answer choice) consistently 
provided similar justifications during interviews (Engelke et al., 2005, October).  
Open–ended Tasks 

The Piecewise Functions (PF) task was adapted from a released 2003 AP Calculus free 
response item by an AP Calculus teacher for precalculus students; it gives students the graph of a 
piecewise function and has them find rates of change and then write equations for the function. 
The Filling the Tank (FT) task was taken from examples developed by Peter Taylor (1992) and it 
requires students to compare average flow (rate of change) with instantaneous flow as water is 
flowing in and out of a tank simultaneously. Both tasks build on the foundational concepts of 
functions and rate of change that students need before calculus and require students to use 
reasoning and demonstrate their understanding of the meaning of functions; however, one task is 
based in a contextual setting and the other is not.  

Students worked on the two tasks individually during a scheduled class period during the first 
week of class and the student work was scored for correctness using scoring guides and coded 
for solution strategies on specific questions for both open–ended tasks. The items coded for 
solution strategies were PF questions 1, 2 and 4 and FT questions B and E. The five categories of 
strategies were: Formula, Graph, Table, Multiple, and None or can’t tell. The scoring guides for 
the open–ended tasks required 22 scoring decisions on each of the PF and FT tasks and the 
average reliability of scoring was 95% and 96% for the PF and FT tasks respectively. 
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Participants 
High school students from Rover High School located in the southwestern region of the 

United States, who completed either Precalculus or AP Calculus AB during the 2009-2010 
school year and enrolled in AP Calculus BC for the 2010–2011 school year were asked to 
participate in the study. All mathematics teachers at Rover High School are part of a National 
Science Foundation Math and Science Partnership grant (No. EHR–0412537). The students in 
this study (N = 36) were taught by one of four different teachers in their previous mathematics 
course (Precalculus or AP Calculus AB). Four mathematics teachers taught students in 
precalculus during the 2009–2010 school year. Three of the four teachers used Precalculus: 
Mathematics for Calculus (Stewart, Redlin, & Watson, 2005) and the fourth teacher used a 
research based conceptually–oriented curriculum Precalculus: A Pathway to Precalculus 
(Carlson & Oehrtman, 2010). All precalculus students took the PCA at the end of the 2009–2010 
school year. Students who enrolled in AP Calculus BC for the 2010–2011 school year completed 
the two open–ended tasks, PF and FT during the first week of class. 

Please note that the three groups of students were not selected deliberately; they naturally 
emerged as a result of the mathematics classes they were enrolled and the choice of curriculum 
followed by their teachers. As a matter of fact, only one teacher chose to use Precalculus: A 
Pathway to Precalculus and this is how the PP students, who are of major interest in this paper, 
were selected.   

 
Results 

The goal of this study was to assess student understanding of the foundational concepts for 
calculus. Therefore, we compared precalculus students’ performance based on the curriculum 
they used. We also compared the precalculus students (N = 25) who used the Pathways 
curriculum to the AP Calculus AB students (N = 11) who enrolled in AP Calculus BC the 
following year. To summarize and clarify, the three groups of students of interest in this study 
were: (1) students who were taught using Precalculus: Mathematics for Calculus (Stewart et al., 
2005), which we refer to as Traditional Precalculus (TP; N = 11); (2) students who were taught 
using Precalculus: A Pathway to Precalculus (Carlson & Oehrtman, 2010), which we refer to as 
Pathways Precalculus (PP; N = 14); and (3) students who completed AP Calculus AB which we 
will refer to as AP Calculus AB (AB).  

The analyses in this study are presented in four parts. First, we provide descriptive and 
comparative analyses to compare the PP students with both the TP students and the AB students. 
Second, we present a breakdown and distribution of student scores to the items on each task and 
compare the PP students with the other two groups (TP and AB). Third, we describe the solution 
strategies used by students based on the three groups. Finally, we compare the effectiveness of 
students’ solution strategies for the PP students with the other two groups (TP and AB).  
Statistical analyses and descriptives  

The first analysis compares TP and PP students; in order to identify whether these groups 
were statistically different prior to entering AP Calculus and completing the open–ended tasks 
the PCA scores were compared. A t–test was conducted and PP students had a statistically 
significant higher mean on the PCA than TP students (t = –3.37, p = .003); therefore, further 
analysis to compare students’ performance from these two groups on the open-ended tasks used 
PCA scores as a covariate to account for difference in learning prior to entering AP Calculus BC. 

An analysis of covariance (ANCOVA) was conducted to determine the statistical difference 
between the mean total score on the PF task for the two groups (PP and TP) of students adjusted 
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for PCA scores. No statistically significant difference was found between the two groups (PP and 
TP) for the mean total score on the PF task (F = 0.98, p = 0.333). A similar analysis was 
completed to determine the statistical difference between the mean total score on the FT task for 
the two groups (PP and TP) of students adjusted for PCA scores. Results indicated no 
statistically significant difference between the two groups (PP and TP) for the mean total score 
on the FT task (F = 0.20, p = 0.658).  

An analysis of variance (ANOVA) was conducted to determine the statistical difference 
between the mean total score on the PF task for the two groups (PP and AB) of students. Results 
indicated no statistically significant difference between the two groups (PP and AB) for the mean 
total score on the PF task (F = 0.10, p = 0.753). A similar analysis was completed to determine 
the statistical difference between the mean total score on the FT task for the same two groups of 
students. No statistically significant difference was found between the two groups for the mean 
total scores on the FT task (F = 2.10, p = 0.161).  

PCA scores for the AB students were not available because data collection on precalculus 
students for the MSP project began the year these students were in AP Calculus. However, the 
results of the two ANOVA’s confirmed that there was no statistically significant difference 
between the PP and AB students for the mean total scores on both open-ended tasks meaning 
these students’ prior knowledge was similar.  
Breakdown and distribution of the scores  

 
Figure 1. Score distributions on the total scores of the PF and FT tasks for the three groups 
of students 

The distributions of the total scores for the three groups of students on the PF and FT tasks 
are displayed in Figure 1. For the PF task, respectively, 45% and 55% of the PP and AB students 
scored higher than 21 out of the total score of 24 while only 9% of the TP students scored in this 
range. Approximately 37% of the TP and AB students scored between 18 and 21 inclusively, out 
of 24. The TP group had the greatest percentage (37%) of students receive a score in the 15.01 – 
18.00 range with 36% of AB students and 22% of PP students scoring in the same range. Finally, 
the standard deviation (3.22) was the same for the PP and TP students whereas it was less for the 
AP Calculus AB students (2.26). 

For the FT task, respectively, 37%, 28%, 10% of the TP, PP and AB students scored in the 
12.01 – 15 range. Meanwhile, 46% of the AB students, 37% of the TP students and 28% of the 
PP students scored in the 15.01 – 18 range. Although none of the TP students scored in the 
highest range of 18.01 – 21.00, 14% of PP students and 27% of AB students scored in this range. 
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Finally, the standard deviation was the greatest for TP students (4.52); whereas, the AB students 
had the smallest (3.22). 
Distribution of the solution strategies 

The distributions of the strategies for all three groups on items 1, 2, and 4 of the PF task and 
items b and e of the FT task are shown in Figure 2. For item 1 of the PF task, 77% of the PP 
students, 55% of the TP students and 37% of the AB students used graphing as their solution 
strategy. While none of the PP students used a formula, approximately 45% of AB students and 
18% of TP students employed this strategy. Finally 18% of the PP students used multiple 
strategies.  

For item 2 of the PF task, graphing again was the dominant strategy for a considerable 
number of students. PP students used graphing the most (77%); while the AB students used this 
method the least (37%). None of the PP students used the formula strategy; however, 
approximately 18% of AB students and 10% of TP students employed this strategy. Only PP 
students (7%) used multiple strategies when solving this question. The AB group had the highest 
percentage (46%) of students whose work for this item revealed no strategy and the TP group 
had a slightly less percentage (36%); however, the PP group only had 16% of students whose 
work did not reveal a strategy.  

 

 
Figure 2. Distributions of strategies for the three groups of students on both of the open 
ended tasks. 

For item 4 of the PF task, the TP group had the highest percentage (64%) of students who 
used graphing to solve this item. The PP group had the highest percentage (23%) of students who 
used multiple strategies, typically graphing and formula strategies, to solve this item. The AB 
group had the highest percentage (74%) of students who used a formula to solve PF item 4. Only 
8% of PP and 9% of AB students work was not possible to code for a strategy.  

For item b of the FT task, the dominant strategy was formulas for all three groups. Of the TP 
students, 36% used formulas, 9% used graphing and the remaining students it was not possible to 
code for a strategy. Of the PP students, 79% used formulas, 7% used graphing and the remaining 
14% of the students it was not possible to code for a strategy. The majority (82%) of the AB 
students used formulas and the remaining 18% of students it was not possible to code for a 
strategy.  

For item e of the FT task, the dominant strategy (graphing) was the same for all three groups; 
respectively 64%, 79% and 74% of the TP, PP and AB students used this strategy. Only TP 
students (9%) used tables and this was the only instance where tables were employed as a 
strategy. The PP group had 7% of students use formulas; whereas, 7% of PP and 8% of AB 
students used multiple strategies. The TP group had the largest percentage of students (27%) 
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whose work was not able to be coded for a strategy, while the PP group had the lowest 
percentage (7%). The percentage of students for whom it was impossible to tell which strategy 
was used was the smallest for the PP group on items 1 and 2 of the PF tasks and items b and e of 
the FT task. 
Simultaneous Comparison of the Solution Strategies and Scores for Evaluating the Efficiency 
among the Groups 

While it is interesting to indicate strategies students used in solving the open-ended task, it is 
also vital to know their respective efficiencies (i.e. what strategies do students use when they 
receive higher scores?). For this purpose we examined simultaneously the scores and strategies 
to assess for each group the strategies employed within each score range. Particular interest was 
given to the students who could score 19 or above out of 24 on the PF task and 14 or above out 
of 21 on the FT task; these students constituted the majority (approximately 70%) of the PP and 
AB students and a minority (35%) of the TP students. For this highest scoring group, the 
dominant strategies were graphs and formulas, although AB students preferred formulas to 
graphs whenever they could whereas this was the opposite for the PP students. The TP students 
in this group primarily used graphs as well. 

 
Discussion 

This study assessed students’ understanding of foundational concepts of calculus. Two open-
ended tasks were used to compare students’ understanding after completing a precalculus or AP 
Calculus course, yet prior to entering AP Calculus BC. Thus, there was a gap of three months 
between the administration of the open-ended tasks and the last time students were in school 
learning mathematics.  

The statistical tests that compared the TP and PP students showed no statistical significant 
difference between these two groups based on their performance on the tasks; however, the 
statistical tests accounted for prior achievement by using the PCA scores as a covariate. The PCA 
is a powerful assessment tool used for evaluating students’ understanding of the key concepts in 
precalculus (Carlson et al., 2010). The fact that the PP students mean PCA scores are statistically 
higher than the TP students mean PCA scores indicates that the PP students have a significantly 
better understanding of the key concepts in precalculus when compared to the TP students. 
Moreover a second conclusion is that the mean total score for the PP students on the open-ended 
tasks were consistently higher than those of the TP students. The PCA scores for the AB students 
were not available. 

The statistical tests that compared PP and AB students showed no statistically significant 
difference between their mean scores on the two open-ended tasks (PF and FT); specifically, on 
individual items and total scores. The existence of no statistically significant differences between 
these groups (PP and AB) is particularly remarkable since theoretically the AB students should 
have performed better than precalculus student on the foundational concepts of calculus as they 
were exposed to a whole year of calculus. Yet, the AB students did not perform better than the 
PP students, which could be interpreted as AB students did not learn the foundational concepts of 
calculus deeply enough to retain them for three months over the summer break; however, the PP 
students did. This result also suggests that the precalculus curriculum, Precalculus: A Pathway to 
Calculus (Carlson & Oehrtman, 2010) is different than the traditional precalculus program.  

In fact, Precalculus: A Pathway to Calculus was specifically designed to deepen the 
understanding of mathematical concepts by improving the learners’ exploratory skills through 
analysis and synthesis; the learners in this curriculum continually study mathematical and 
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scientific contexts and use mathematics as a means to perform scientific investigations. 
Accordingly, the classroom practice is shifted from the delivery of curricular material to inquiry 
and project-based approaches centered on content. This study proves that such a shift will help 
students develop a deeper and longer lasting understanding of the foundational concepts of 
calculus. 

The sample sizes were 11 for the TP and AB students while it was 13 or 14 for the PP 
students. This is a considerable limitation which could have created power issues, however, this 
study was indeed a pilot one, carried out to assess the effectiveness of the Precalculus: A 
Pathway to Calculus program. Nevertheless, the relatively smaller sample sizes did not hinder 
the ability of the authors to come to statistically significant conclusions about the superior 
aspects of the program.  

Based on the results of this study, the Precalculus: A Pathway to Calculus is likely to create 
a positive impact on the precalculus knowledge of students prior to entering calculus. 
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