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In this paper, we provide an account of the evolution of mathematical norms for argumentation 
that emerged during an ongoing teacher collaboration. The collaboration involves the 
mathematics and science teachers at Green Valley High School in the southwestern United 
States. As part of the collaboration, teachers were offered the opportunity to participate in 
college level courses offered at the school. In the fall of 2008, 21 of the 32 mathematics and 
science teachers chose to participate in a course that focused on functions and the covariation of 
the measures of two quantities. The activities that comprised the course were intended to serve 
as didactic objects around which productive conversations could emerge. Therefore, 
mathematical arguments developed around key significant mathematical issues. As a result, the 
norms for mathematical argumentation evolved during the semester. 

 
Introduction 

Balancing the tensions inherent in simultaneously attending to students’ contributions and the 
mathematical agenda is a hallmark of deliberately facilitated discussions (cf. McClain, 2003). 
These discussions involve a plethora of decisions that must be made both prior to and while 
interacting with students. The image that results is that of the teacher constantly judging the 
nature and quality of the students’ contributions against the mathematical agenda in order to 
ensure that the issues under discussion offer means of supporting the students’ mathematical 
development. This view of mathematical discussions stands in stark contrast to open-ended 
sessions where all students are allowed to share their solutions without concern for potential 
mathematical contributions. In order to engage in the process of elevating discussions to the level 
of sophisticated mathematical argumentation, the teacher must have a deep understanding of the 
mathematics under discussion (cf. Ball, 1989; Ball, 1993, Ball, 1997; Bransford et al., 2000; 
Grossman, 1990; Grossman, Wilson, & Schulman, 1989; Ma, 1999; McClain, 2004; Morse, 
2000; National Research Council, 2001; Shulman, 1986; Schifter, 1995; Sowder, et al., 1998; 
Stein, Baxter, & Leinhardt, 1990). This is critical in both being able to advance the mathematical 
agenda and in judging the quality and worth of student contributions. It requires decision-making 
in action concerning the pace, sequence and trajectory of discussions in order to ensure that the 
discussions are mathematically productive. 

When focusing on students’ offered explanations and justifications, the teacher is seen to 
actively guide the mathematical development of both the classroom community and individual 
students (Ball, 1993; Cobb, Wood, & Yackel, 1993). This guiding necessarily requires a sense of 
knowing in action on the part of the teacher as he or she attempts to capitalize on opportunities 
that emerge from students' activity and explanations. With this comes the responsibility of 
monitoring classroom discussions, engaging in productive mathematical discourse, and 
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providing direction and guidance as judged appropriate. Similar pedagogical issues are addressed 
in Simon's (1995) account of the Mathematics Teaching Cycle that highlights the relationship 
between teachers’ knowledge, their goals for students, and their interaction with students. 

A focus on the importance of students’ contributions also highlights the importance of norms 
that constitute the classroom participation structure. The importance attributed to classroom 
norms stems from the contention that students reorganize their specifically mathematical beliefs 
and values as they participate in and contribute to the establishment of these norms.  

In the analysis in this paper, we focus on the discourse between and among the teachers and 
instructors in a setting in which the authors were the instructors. The analysis will make explicit 
the evolution of the discussions over the course of the interaction. In doing so we clarify the 
normative ways of speaking that evolved in the process. This work is significant in that it offers 
one framework for thinking about how to guide the evolution of productive mathematical 
argumentation. 

 
Setting 

The authors are involved in ongoing teacher collaboration with a group of high school 
mathematics and science teachers from Green Valley High School1. Green Valley High School 
serves a student population of approximately 2,800. It contains grades ten through twelve. As 
part of the collaboration, in the fall semester of 2008, 21 of the 32 mathematics and science 
teachers at Green Valley chose to participate in a course that was taught on Monday afternoons 
at the school. The authors served as instructors for the course that focused on covariational 
reasoning. The teachers were able to earn three hours of college credit for their participation. In 
addition, all of the mathematics and science teachers in the school attended weekly curriculum 
planning meetings. The teachers were assigned to groups according to the primary subject they 
taught. For instance, all of the Biology teachers met together as did the pre-calculus teachers. 
This meeting time was supported by the Principal as evidenced by his arranging for common 
planning periods for the teachers. However, for the purposes of the analysis in this paper, data is 
taken only from the discussions that occurred during the Monday night class. 
 

Description of the Course 
The course was designed to focus on a significant mathematical concept, that of covariational 

reasoning. Oehrtman and colleagues (Oehrtman, Carlson, & Thompson, 2008) have argued that 
covariational reasoning is foundational to high school mathematics and should serve as the 
organizing concept for all courses. We agree with this stance and therefore took covariational 
reasoning as our mathematical endpoint. In order to achieve the envisioned endpoint of 
covariational reasoning playing a significant role in instruction, we initially engaged the teachers 
in activities that were used in an Algebra I class where covariational reasoning guided the 
development of the mathematics. (These activities were part of a project conducted by Pat 
Thompson and his research team.) The teachers in the class worked through the series of 
activities as students and then reflected on their prior activity from their position as teachers. 
Following their mathematical investigations, they explored the classroom in which the 
instructional unit was implemented. This was made possible by video-based case development 
efforts from Thompson’s ongoing grant. Two of the authors, McClain and Coe, had participated 
in the case development and were, therefore, well equipped to provide instruction based on the 
case. 
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Following the case investigation, class sessions turned to materials developed from Project 
Pathways that was funded by the National Science Foundation under Carlson’s direction. She 
therefore took the lead on the instruction for this portion of the course. The materials begin with 
an investigation of proportional reasoning as it relates to functions, and they form the basis for an 
exploration of linear and exponential growth. Throughout the investigations the teachers were 
encouraged to consider how the measures of the two quantities co-varied in each situation. The 
grounding of the problems in contextual situations allowed the teachers to work in small 
intervals to investigate the phenomena (e.g. small increments of time). It also helped support a 
shift away from what Thompson (personal communication, 2008) calls “shape thinking.” Shape 
thinking involves imagining the “path” of the phenomena and then seeing the graph as a “static” 
representation of the completed trace of the path. In other words, the graph is static and has 
already occurred. An example can be seen when students trace the path of a car given the time 
and distance it has traveled instead of trying to coordinate the measures of the quantities of time 
and distance. 

It is important to note that throughout the semester, the teacher participants were constantly 
encouraged to speak with meaning. Elsewhere we have described speaking with meaning as 
ensuring that explanations carry meaning for all participants. This requires conceptually based 
conversation about quantity. The negotiation of the norms for argumentation that resulted lead to 
improved understanding between the teachers and deeper knowledge of the content. It is these 
discussions that provide the basis of our analysis. 

 
Methodology 

The general methodology falls under the heading of design research (Brown, 1992; Cobb, 
Confrey, DiSessa, Lehrer, & Schauble, 2003). Following from Brown’s characterization of design 
research, the teacher collaboration involved engineering the process of supporting teacher change. 
Like Brown, we attempted to “engineer innovative educational environments and simultaneously 
conduct experimental studies of those innovations” (p. 141). This involved iterative cycles of 
design and research where conjectures about the learning route of the teachers and the means of 
supporting it were continually tested and revised in the course of ongoing interactions. This is a 
highly interventionist activity in which decisions about how to proceed were constantly being 
analyzed against the current activity of the teachers.  

The particular lens that guided our analysis of the data was a focus on the normative ways of 
arguing about solutions, or what Cobb and Yackel (1996) define as the classroom mathematical 
norms. Classroom mathematical norms focus on the collective mathematical learning of the teacher 
cohort2 (cf. Cobb, Stephan, McClain, & Gravemeijer, 2001). This theoretical lens therefore 
enabled us to document the collective mathematical development of the teacher cohort over a 
period of time. In order to conduct an analysis of the communal learning, it is important to focus on 
the diverse ways in which the teachers participate in communal practices. For this reason, the 
participation of the teachers in discussions where their mathematical activity is the focus then 
becomes the data for analysis. The diversity in reasoning also serves as a primary means of support 
of the collective mathematical learning of the teacher cohort. An analysis focused on the 
emergence of classroom mathematical norms is therefore a conceptual tool that reflects particular 
interests and concerns (Cobb, et al., 2001). 
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Analysis 
Research on effective teaching often characterizes the teacher’s classroom decision-making 

process as informed by the mathematical agenda, but constantly being revised and modified in 
action based on students’ contributions. These characterizations take account of the students’ 
contributions while attending to the mathematics. Attempting to balance the tension inherent in 
simultaneously attending to students’ offered solutions and the mathematical agenda is the 
hallmark of deliberately facilitated discussions. A critical resource for the teacher in this process 
is therefore the means of support available to help him achieve his mathematical agenda. This 
support manifests itself in the form of the instructional tasks and the tools available for solving 
the tasks. For this reason, tools, notation systems, and student generated inscriptions all serve an 
important role in the mathematics classroom. However, it is not the tool (or the notation or the 
inscription) in isolation that offers support for the teacher. It is instead the students’ use of the 
tools and the meanings that they come to have as a result of this activity (Kaput, 1994; Meira, 
1998; van Oers, 1996). In this way, the tool is not seen as standing apart from the activity of the 
student. When designed, these objects must be thought of as didactic objects that will form the 
basis for reflection and discussion (cf. Thompson, 2002). For this reason, the teacher generated 
artifacts from the course served an important role in supporting the evolution of mathematical 
discourse. 

As an example, one of the first tasks posed to the teachers in the Monday afternoon class is 
called the Sprinter Task3. In this task, the teachers first watched a video of Florence Griffith 
Joyner’s Gold Medal 100 meter race. After viewing the race a couple of times, the teachers were 
asked to qualitatively track the distance from the start against time since the start. In this 
introductory task, the teachers had to begin to coordinate two quantities4, distance from start and 
time from start. As part of the coordination, they were asked to create a graph and then explain 
the graph in terms of the two co-varying quantities. 

As the teachers worked, one group of mathematics teachers was very focused on the 
accuracy of their graph. They were unable to think about the measures qualitatively and 
struggled to get exact measures for exact times by continually starting and stopping the video. 
They were reluctant to share their solution until they were sure that their graph was correct. Our 
goal was more global. We wanted the graphs to show a qualitative relationship between the 
measures of the two quantities that could be described generally with wording such as, “As time 
passes, her distance from start increases.” We were also interested to know if the teachers viewed 
Griffith-Joyner traveling at a constant rate, an increasing rate or other, and we were interested in 
their understanding of the meaning of these. Our ability to support the teachers’ ability to focus 
on the coordination of the measures of the two quantities depended upon their ability to reason 
about the situation, not read a graph in the canonical sense. 

Unfortunately, we did not achieve our goal on this first task. This is not surprising either now 
nor was it at the time. The mathematics teachers in particular argued that scaling the axes was an 
important part of creating a graph. We eventually had to tell them to leave them unmarked. Even 
so, they were hesitant to present their results. 

Although all of the groups of teachers were able to generate a graph that gave a qualitative 
sense of the how the measures of the two quantities co-varied, conversations at this point were 
characterized by telling. In this early phase of the class, the teachers were focused on the 
correctness of the answer and their contributions were a recitation of that correct answer and the 
procedure used to arrive at it. In addition, they did not question each other, but sat quietly as each 
group shared. This portion of the lesson took on characteristics of a “show and tell” instead of an 
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intellectual conversation about ideas. We were, in fact, unable to prompt significant 
conversations at this point. We therefore describe the first mathematical norm that emerged as 
that of argumentation as telling. 

A week later, we posed a question that involved the teachers watching another video and then 
creating a graph of the situation. In this video, a skateboarder skates back and forth on a half 
pipe. The Skateboarder task required the teachers to coordinate the boarder’s horizontal distance 
from start with the time from start. In this task, the teachers had to attend to the quantities being 
tracked rather than the position of the boarder. This is in sharp contrast to the Sprinter task where 
Griffith-Joyner’s position gave information on the distance from start. This task, therefore, 
focuses on the issue of shape thinking in that if teachers tried to rely on the position of the 
skateboarder, the graph would be incorrect as shown below in Figure 1. 

 
 
 
  
 
 
 
 
 
 

  Time  
 

Figure 1. Path of the skateboarder on a half pipe. 
 

The other significant issue that emerged was that of explicitly labeling the axes. For instance, 
using the descriptor “distance” to label the vertical axis does not clarify what quantity is varying. 
It could be the total distance traveled. When graphed correctly, the vertical axis should be 
labeled horizontal distance from start and the horizontal axis labeled time from start. For this 
reason, the graph is not the trace of the half pipe as shown above, but the coordination of the 
measures of the two quantities. Therefore, in creating their graphs, the teachers had to wrestle 
with first understanding what two quantities were being measured and then coordinating the 
variation in those quantities. In the process of creating their graphs, the different groups came up 
with differences in their interpretations as shown below (Figure 2).  

 
 
 
 
 
 
 
 
 

Figure 2. Graphs of the skateboarder’s distance from start as a function of time. 
 

Distance  
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When these were juxtaposed on the board, a lively discussion ensued. The teachers initially 
fell into their original mode of discussion by engaging in a show and tell. However, the 
differences in their graphs initiated a shift in the conversations such that the teachers began to 
take the position of defending their own graph. There was no effort to make a comparison across 
the different graphs—only to justify why their graph was correct. As a result, the teachers did not 
attend to each other’s argument, but focused only on their artifact. There was no attempt to revise 
and modify the current graphs to move toward a more accurate representation. That only 
occurred at our initiation. The teachers just kept pointing to their own solution. As a result, the 
second mathematical norm that emerged was that of argumentation as disagreement.  

As the course continued and the teachers continued to investigate situations where they had 
to coordinate the measures of two quantities, the instructors began to push the teachers to speak 
meaningfully about their graphs. In particular, as the teachers explained their graphs to the class, 
they were pressed to talk about what was happening to one variable as the other changed or 
varied. As an example, in the skateboarder task, it was insufficient to say, “First he went down 
and then across and then back up.” A more meaningful explanation was, “as he dropped down 
the left side of the pipe, his horizontal distance from start did not change. However, as he moved 
along the base of the pipe, his horizontal distance from start began to increase. As he went up the 
right side of the pipe, his horizontal distance from start was the same.” In other words, the 
explanation had to be in terms of the two quantities and how they are covarying. In subsequent 
problems the teachers and instructors began to renegotiate what constituted an adequate 
explanation.  

In this third phase there was, therefore, a significant shift in that the teachers began to engage 
in conceptual explanations. However, their goal was not to engage other members of the class in 
a discussion. The teachers spoke to the other members of the class, not with them (elsewhere 
Lima and colleagues have made a similar distinction, (personal communication, June, 2008)). 
Although the teachers were able to reconceptualize their own thinking about a particular 
solution, they were still unable to understand what it might mean to speak so that others could 
comprehend their thinking. As a result, the third mathematical norm for argumentation that 
emerged was that of speaking conceptually to another. 

The last mathematical norm for argumentation that emerged was that of speaking 
conceptually with another. In this fourth and final phase, the teachers continued to speak 
meaningfully or engage in conceptual explanations with their colleagues. However, the teachers 
were not only able to reconceptualize their own thinking about a particular solution but also do 
this while thinking about what it might mean to speak so that others might comprehend their 
thinking. This shift in argumentation was apparent in discussions of the Bungee Jumper task. In 
this task, the teachers were shown a video of a man bungee jumping off of a bridge. The task was 
to create a graph that coordinated the time since the jumper leapt from the bridge with his 
distance from the ground. By making the distance quantity the distance from the ground, 
teachers were unable to create a graph that was merely the trace of the jumper’s path. Instead, 
they had to coordinate the variation of the time since he leapt with his distance from the ground. 
As the teachers shared their solutions, they used their explanations and questions to clarify for 
both themselves and their colleagues how the distance varied as time changed. In this process 
there was a concerted effort on the part of the teachers and the instructors to communicate 
clearly. It was during these conversations that the teachers began to speak conceptually with one 
another. 
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Conclusion 
In the analysis presented in this paper, we have provided an account of the evolution of the 

mathematical norms for argumentation that occurred in the course taught to the mathematics and 
science teachers at Green Valley High School. This work is significant in that it provides a 
framework for thinking about mathematical argumentation in the context of teacher 
development. This evolution is similar to data we have analyzed from other teacher development 
collaborations (see McClain, 2002). For this reason, we argue that we are providing the starting 
points for what diSessa and Cobb (2004) call a framework for action. diSessa and Cobb 
characterize a framework for action as a first step toward the development of a guiding theory. 
Therefore, we are not claiming that we have discovered a new theory. Our claims are much more 
modest. What we are offering is a first step in that direction. As a result, this pattern of evolution 
will be useful in our future work. The potential of its power as a theory is only determined by its 
use by others in similar and different situations. The messiness and complexity of teacher 
development in the context of design research “highlights the pressing need for theory while 
simultaneously making the development of useful theories more difficult” (p. 79). It is for that 
reason that we offer this process as a “way of looking” at this significant aspect of teacher 
collaborations. 
 

Endnotes 
1. Green Valley is a pseudonym. 
2. In this analysis, we purposely refer to the group of teachers as a cohort instead of a 

community. Documentation of the evolution of the cohort into a community is beyond the scope 
of this paper. We therefore take the “easier road” by not making assumptions about the nature of 
the relationships within the cohort at the time of this analysis. We choose to do so because of the 
importance we place on both establishing communities of teachers and verifying their existence 
with established criteria (cf. Wenger, 1998). 

3.  The initial tasks were designed by Scott Adamson and Ted Coe as part of their grant 
work with Pat Thompson. 

4.  By quantity we mean an attribute that can be measured or that one can imagine 
measuring. 
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