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ABSTRACT    

There have been a number of studies that have examined students’ difficulties in 

understanding the idea of logarithm and the effectiveness of non-traditional interventions. 

However, there have been few studies that have examined the understandings students 

develop and need to develop when completing conceptually oriented logarithmic lessons. 

In this document, I present the three papers of my dissertation study. The first paper 

examines two students’ development of concepts foundational to the idea of logarithm. 

This paper discusses two essential understandings that were revealed to be problematic 

and essential for students’ development of productive meanings for exponents, 

logarithms and logarithmic properties. The findings of this study informed my later work 

to support students in understanding logarithms, their properties and logarithmic 

functions. The second paper examines two students’ development of the idea of 

logarithm. This paper describes the reasoning abilities two students exhibited as they 

engaged with tasks designed to foster their construction of more productive meanings for 

the idea of logarithm. The findings of this study provide novel insights for supporting 

students in understanding the idea of logarithm meaningfully. Finally, the third paper 

begins with an examination of the historical development of the idea of logarithm. I then 

leveraged the insights of this literature review and the first two papers to perform a 

conceptual analysis of what is involved in learning and understanding the idea of 

logarithm. The literature review and conceptual analysis contributes novel and useful 

information for curriculum developers, instructors, and other researchers studying student 

learning of this idea. 
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INTRODUCTION 

The idea of logarithm is useful both in mathematics (e.g., number theory – 

primes, statistics – non-linear regression, chaos theory – fractal dimension, calculus – 

differential equations) and in modeling real-world relationships (e.g., Richter scale, 

Decibel scale, population growth, radioactive decay). Therefore, a goal for mathematics 

educators should be to assist students in developing coherent meanings for the idea of 

logarithms. How does one achieve this goal? One approach is to research the aspects of 

the idea of logarithm students have difficulties with. In particular, studies have shown 

that students have difficulty with logarithmic notation, logarithmic properties and 

logarithmic functions (Weber, 2002; Kenney, 2005; Strom, 2006; Gol Tabaghi, 2007). 

Another approach is to develop and test the efficiency of interventions relative to 

standard curriculum (Weber, 2002; Panagiotou, 2010). Although these methods may shed 

light on epistemological obstacles students encounter and/or the effectiveness of a non-

traditional intervention, neither approach examines the reasoning abilities needed to 

coherently understand and use the idea of logarithm. In fact, relatively few studies have 

examined what meanings students have for the idea of logarithm (Kenney, 2005; Gol 

Tabaghi, 2007), and fewer have examined how students come to conceptualize the idea 

of logarithm (Kastberg, 2002).  

This study investigates three undergraduate precalculus students’ understandings 

of the idea of logarithm and concepts foundational to the idea of logarithm as they work 

through an exploratory lesson on exponential and logarithmic functions. The findings of 

this study may reveal essential components that students must conceptualize in order to 

hold a productive meaning for the idea of logarithm. For example, in order to reason 
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through tasks involving logarithmic expressions, logarithmic properties, and logarithmic 

functions in a way that builds off prior meanings and serves to be useful for more 

complex tasks, students may find it helpful to conceptualize that multiplying by A and 

then multiplying by B has the overall effect of multiplying by AB, and conceptualize that 

an exponent on a value b represents the number of b-tupling1 periods that have elapsed. 

In this study, I model the students’ thinking as they participate in an exponential and 

logarithmic sequence designed to assist students in developing coherent meanings for the 

idea of logarithm. I also discuss the importance of conceptualizing the essential 

components in the context of the lesson. 

  

                                                
1 A b-tupling occurs when a quantity becomes b times as large. Therefore, a b-tupling period is the amount 
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STATEMENT OF PROBLEM 

Teachers and researchers have recognized that students face challenges when 

introduced to logarithms and logarithmic functions. In an effort to lighten the burden on 

students, some teachers have tried incorporating the history of logarithms into their 

lessons (Panagiotou, 2011), changing the notation (Hammack & Lyons, 1995), and 

approximating logarithms with repeated division (Vos & Espedal, 2016), yet research 

continues to report that many students struggle to develop coherent understandings for 

logarithmic notation, properties and function (Weber, 2002; Kenney, 2005; Strom, 2006; 

Gol Tabaghi, 2007). Adding to the problem, standard curriculum often fails to present the 

material in a meaningful and coherent way. A review of 5 precalculus and calculus texts2 

revealed that y = logb (x)  was introduced as the inverse to y = bx , with the properties of 

logarithms stated shortly after. It seems necessary to first understand the ways in which 

students develop productive meanings for the idea of logarithm if we wish to improve the 

curriculum. Unfortunately, little research has been conducted on the understandings 

students develop during an instructional sequence on exponential and logarithmic 

functions. Additionally, little is reported on the ways in which students develop coherent 

understandings of the idea of logarithm (i.e. logarithmic notation, logarithmic properties, 

the logarithmic function). 

The difficulties students have with developing coherent understandings of the idea 

of logarithm is likely multidimensional. In a typical precalculus course, logarithmic 

functions are the first function family introduced that does not specify a function rule, 

                                                
2 (1) Spiegler, Adam, "Functions Modeling Change: A Preparation for Calculus" (2011). Faculty Books. 92. 
(2&3) Stewart, J. (2010). Calculus: early transcendentals. Cengage Learning. [2nd and 6th editions] (4) 
Anton, H. Calculus with Analytic Geometry, 1988. (5) Carlson, M., Oehrtman, M., & Moore, K. (2010). 
Precalculus: Pathways to calculus: A problem solving approach. Rational Reasoning. 
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leaving students with no direction on how to determine the value of logb (m)  given values 

of b and m. Instead, students are expected to either apply their understandings of the idea 

of logarithm, exponents and powers to approximate the value of a logarithm for some 

input value, or, more commonly, use technology to calculate its value. In fact, the 

Common Core State Standards (CCSS) for mathematics have as one of the goals for high 

school students that they be able to write the corresponding logarithmic equation given an 

exponential equation, and calculate the value using technology (only for bases 2, 10 and 

e). Logarithmic functions are also the first function family that students encounter in 

which the function name is not a single letter. This may introduce an added complexity 

for students who already struggle in using function notation (Thompson, 2013; Musgrave 

& Thompson, 2014). Additionally, aspects of logarithmic notation have a dual nature to 

them (Kenney, 2005). For example, in logb (x) = y , b, x, and y take on a variety of 

meanings – b often takes on the form of a parameter (staying consistent within the 

context of a problem, but varying from problem to problem), x serves as the input 

variable to the logarithmic function and is a tupling, and y serves as the output variable to 

the logarithmic function and is the number of b-tupling periods needed to result in an x-

tupling.  

In addition to these unavoidable complexities, studies have shown that students 

struggle to understand, explain and apply the three properties of logarithms (Gol Tabaghi, 

2007; Weber, 2002). In an exploratory study, I found students also have difficulties 

interpreting the expression logb (x)  in a coherent and meaningful way. Some students 

even claimed that in order for the expression to have meaning, one would need to know 
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what the expression was equal to (so that the equation could be rewritten in exponential 

form). Therefore, it seems reasonable to assume that if students continue to have 

difficulties in understanding the idea of logarithm (i.e. logarithmic notation, logarithmic 

properties, the logarithmic function), they must still need to develop some 

understanding(s) foundational to the topic. This investigation intends to discover 

understandings that are foundational to understanding the idea of logarithm and research 

how students come to understand the idea of logarithm in hopes of contributing to current 

research in this area. An additional goal of this study is to inform curriculum so that 

students can build more coherent understandings of logarithms.  

The primary questions motivating this investigation are: 

− What understandings are foundational to understanding the idea of logarithm? 

− What understandings of the idea of logarithm do students develop during an 

exponential and logarithmic instructional sequence that emphasizes 

quantitative and covariational reasoning? 

While examining research on student understandings of exponential and 

logarithmic functions, I was inspired by the conceptually-based exponential situation 

involving Ellis’ et al. (2012, 2015) Jactus the Cactus. The instructional sequence 

designed for this study was created to support the subjects in learning the foundational 

ideas of exponential functions. The activities in this study were also designed to promote 

a contextual interpretation of the idea of logarithm before introducing a generalized form. 

This investigation seeks to offer new research on the understandings foundational to the 

idea of logarithm, as well as the understandings of the idea of logarithm that 
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undergraduate precalculus students develop during an exponential and logarithmic 

instructional sequence that emphasizes quantitative and covariational reasoning. 

Furthermore, this research may inform future work to support students in understanding 

logarithms, their properties and logarithmic functions. 
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LITERATURE REVIEW 

This study will investigate the understandings foundational to understanding the 

idea of logarithm and the understandings of the idea of logarithm students develop during 

an exponential and logarithmic instructional sequence that emphasizes quantitative and 

covariational reasoning. Thus, I will organize the relevant literature into three categories: 

1. Background for Investigation, Quantitative Reasoning and Covariational 

Reasoning 

2. Research literature on students' understandings of exponents and the 

exponential function 

3. Research literature on students' understandings of the idea of logarithm and the 

logarithmic function 

Background for Investigation, Quantitative Reasoning and Covariational Reasoning 

For the last 35 years, textbooks have introduced the idea of logarithm by 

presenting some version of Euler’s definition for logarithm – usually in the form of a 

biconditional statement relating an exponential equation to its equivalent logarithmic 

equation (Panagiotou, 2011). A review of 5 precalculus and calculus texts3 revealed that 

examples and exercises on writing the equivalent form of exponential and logarithmic 

equations often follow the presentation of the definition. Then, without much 

development, anywhere from 3-6 logarithmic properties are stated and more examples 

and exercises ensue. There is no explanation of how to think about a logarithm or what 

the input quantity or the output quantity of a logarithmic function represents. Weber’s 

(2002) pilot study revealed that most students who were taught using this traditional 

approach to teaching the idea of logarithm were often unable to recall or justify properties 
                                                

3 Previously listed 
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correctly. For example, none of the students in the control group in his study correctly 

determined the value of logx (x) . Kenney’s (2005) study further revealed that students 

often applied incorrect procedures to isolate x when presented with logarithmic equations 

involving more than one logarithmic expression, such as log5(x) + log5(x + 4) = 1 . To 

justify their work, the students in her study stated their applied method was a logarithmic 

property. These “properties” often included eliminating the logarithmic notation, so long 

as the base value was the same for both logarithmic expressions, and rewriting the 

remaining numerals and symbols in an alternate form. For example, for the previous 

example, one of the students simplified the equation as x + (x + 4) = 1and solved for x. 

Kenney also observed that students, when presented with an equation involving only one 

logarithmic expression, rewrote the logarithmic expression in the equivalent exponential 

form. In addition, while I conducted research for my block grant, I noticed a tendency in 

the students in my study to rewrite logarithmic expressions in exponential form as a way 

of coping with the task of graphing y = log10 (x) . I hypothesized that the students did not 

have a productive way to think about logarithms and therefore relied on rewriting the 

equation in exponential form to make sense of the task. I decided to test to see if more 

students struggled to give meaning to logarithmic expressions (not equations where 

students could rewrite the equation in exponential form). Four of my colleagues and I 

decided to add a question addressing the meaning of a logarithmic expression (Figure 

0.1) on a Pathways precalculus exam.  



 

9 
 

Which of the following best describes what log3.45 (65.2)  represents4? 

  A. The number of factors of 65.2 there are in 3.45 

  B. The number of factors of 3.45 there are in 65.2 

  C. There are 65.2 factors of 3.45 

  D. There are 3.45 factors of 65.2 

  E. Not enough information – you need what log3.45 (65.2)  is equal to.  

Figure 0.1. Exam Question Addressing a Logarithmic Expression 

Across all five classes, “E” was the most frequently chosen distractor. The results 

from these and other studies (Kastberg, 2002; Strom, 2006; Gol Tabaghi, 2007; Kenney 

& Kastberg, 2013) suggest students struggle with the idea of logarithm, logarithmic 

notation and the logarithmic function. Smith and Thompson (2007) argue that if students 

are to utilize algebraic notation to assist them in representing ideas and reasoning 

productively, then their ideas and reasoning must become sophisticated enough to justify 

the use of the notation in the first place. I argue that the same is true for the idea of 

logarithm and logarithmic notation. That is, before students begin using logarithmic 

notation and the logarithmic properties to represent their ideas and reasoning, their 

reasoning must identify a need for such tools. How does one develop such sophisticated 

reasoning? Smith and Thomson (2007) claim that it is through years of developing 

quantitative reasoning that make algebraic knowledge more meaningful and productive 

(pg. 10). In the paragraphs that follow, I describe quantitative reasoning and discuss its 

relevance in learning and understanding the idea of logarithm. 

                                                
4 The answer choices were designed using Weber’s (2002) definition of logarithm. I have since modified 
my definition of logarithm. 
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A quantity is a mental construction of a measurable attribute of an object 

(Thompson, 1990, 1993, 1994, 2011). That is, quantities do not exist out in the world; 

they are created in the mind of an individual when she conceptualizes measuring a quality 

of an object (Thompson, 2011). For example, suppose a saguaro cactus was purchased on 

January 1st of this year. When one imagines measuring the height (attribute) of the cactus 

(object), or measuring the elapsed (attribute) time (object) since the cactus’ purchase, we 

say she has conceptualized a quantity. Furthermore, one is said to participate in the act of 

quantification when, after conceptualizing a quantity, she conceptualizes the attribute’s 

unit of measure such that the attribute’s measure is proportional to its unit (Thompson, 

2011). For example, to engage in the act of quantification, one could imagine the cactus 

(object) and the cactus’ height (attribute), and determine that the height of the cactus was 

5.4 feet (where the attribute’s measure, 5.4 feet, is 5.4 times as large as the unit of 

measure, 1 foot). In this example, we refer to 5.4 – the numerical measurement that a 

quantity may assume – as a value. When the measurable attribute of an object doesn’t 

change throughout a situation, we call it a constant or fixed quantity. For example, the 

price paid for the cactus on the first of January would be considered a constant quantity. 

On the other hand, if the value of a quantity changes throughout a situation, we call it a 

varying quantity.  

Mathematics is often used to model and describe how two or more quantities 

relate. A quantitative operation occurs in the mind of an individual and is when “one 

conceives a new quantity in relation to one or more already-conceived quantities” 

(Thompson, 2011, pg. 9). For example, one could conceive of the height of the cactus on 

January 1st and the height of the cactus on February 1st as two individual quantities. Next, 
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he could conceptualize how many times as large the February 1st cactus is compared to 

the January 1st cactus as a new quantity by multiplicatively comparing the two 

preconceived quantities by means of a ratio. When one conceives of three quantities 

related by means of a quantitative operation, we say he has conceptualized a quantitative 

relationship. Changing which quantity is determined by the quantitative operation 

changes the quantitative relationship (Thompson, 1990). In the previous example, the 

“growth factor” comparing how many times as large the February 1st cactus is compared 

to the January 1st cactus is a ratio; however, if one wished to determine the height of the 

cactus on February 1st given that the saguaro grew by a factor of 3 over the month of 

January, she would need to re-conceive the “growth factor” as representing a 3-tupling5 

(i.e. tripling). When one analyzes a situation and assigns his observations (i.e. quantities, 

quantitative relationships) to a network of quantities and quantitative relationships, called 

a quantitative structure, he is said to engage in quantitative reasoning (Thompson, 1988, 

1990, 1993, 1994, 2011). 

When a student engages in the essential constructs of quantitative reasoning she 

may end up developing a need for logarithmic notation on her own – possibly making the 

notation more meaningful to her. For example, suppose Mary purchased a cactus on 

January 1st and noticed the cactus was growing in a peculiar way. Mary might 

conceptualize the cactus’ height as a quantity and decide to measure the cactus’ height 

using the cactus’ height at different moments. Suppose she initially documented the 

cactus’ height on a wall and concluded that the cactus is one cactus tall on the first of 

January. One week later, Mary documented the cactus’ new height on the wall, measured 

                                                
5 I define an m-tupling as the event in which a quantity becomes m times as large. 
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its current height using its initial height as the unit of measure, and concluded that the 

cactus one week later had a measure of 2 (in units of the initial cactus) – therefore 

participating in the act of quantification. Suppose she then concluded that in that one-

week’s time, the cactus’ height 2-tupled (doubled). If Mary conceptualized the factor by 

which the cactus may grow (the tupling value) as a quantity, resulting from 

multiplicatively comparing the two heights, she engaged in a quantitative operation. If, 

after documenting the cactus’ growth over a long period of time, Mary concludes that the 

2-tupling (doubling) period is one week, she may be curious to determine how many 2-

tupling (doubling) periods need to elapse for the initial cactus to 9-tuple in height (to 

determine how long she has until she needs to take the cactus outside). Mary could then 

use logarithmic notation to represent the value of that particular quantity – specifically, 

log2(9) . In general, I define logb (m)  to represent the number of b-tupling periods6 

necessary to result in an m-tupling. The steps used to solve for the inverse relationship to 

the general representation of an exponential relationship, y = a(b)x , informed this 

decision. For example, when solving for x applying Euler’s definition, we get 

x = logb (y / a) , therefore indicating that the argument to the logarithmic function is a y/a-

tupling. That is, in order for the initial value of the exponential relationship to be equal to 

y, the initial value must y/a-tuple or become y/a times as large. 

To illustrate the difference between algebraic reasoning and quantitative 

reasoning in an exponential situation, consider the following task: Suppose cactus A was 

14 feet tall on January 1st and doubles (2-tuples) in height each week and suppose cactus 

                                                
6 Recall, a b-tupling occurs when a quantity becomes b times as large. Therefore, a b-tupling period is the 
amount of change in one quantity (typically time) needed for a second quantity to become b times as large. 
We say that the second quantity has b-tupled over some interval of change of the first quantity. 
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B is 5 feet tall on January 1st and triples (3-tuples) in height each week. After how many 

weeks will the two cacti be the same height? A typical algebraic solution to this problem 

involves defining variables, developing expressions that represent the heights of the cacti, 

setting those expressions equal to one another, and solving for the unknown value. If x 

represents the number of weeks since January 1st, then 14(2)x  represents the height of 

cactus A x weeks after January 1st, and 5(3)x  represents the height of cactus B x weeks 

after January 1st. We wish to solve 14(2)x = 5(3)x  for x. Although algebraic solutions 

may vary, a typical solution follows the form of the solution in Figure 0.2.  

        

Figure 0.2. A Typical Algebraic Response  

On the other hand, a response that utilizes quantitative reasoning does not require 

the use of symbols to represent relationships, but rather deals with the relationships 

themselves. Here is one example of such reasoning: Initially, cactus A’s height is 14/5 

times as tall as cactus B’s height. Therefore, cactus B’s height needs to 14/5-tuple as well 

as 2-tuple as many times as cactus A’s height did over the entire interval. For any one-

week change, the height of cactus B 3-tuples – this is equivalent to the height of the 

cactus experiencing a 2-tupling and then immediately experiencing a 1.5-tupling. That is, 

the 2-tupled height becomes 1.5 times as large for an overall 3-tuple in height. So, from 

the start, any time that cactus B triples (3-tuples), the necessary doubling is taken into 

14(2)x = 5(3)x

14
5

= 3
x

2x

14
5

= 3
2

⎛
⎝

⎞
⎠

x

ln 14
5

⎛
⎝

⎞
⎠ = ln 3

2
⎛
⎝

⎞
⎠

x⎛

⎝⎜
⎞

⎠⎟

ln 14
5

⎛
⎝

⎞
⎠ = x ln 3

2
⎛
⎝

⎞
⎠

 x =
ln 14

5
⎛
⎝

⎞
⎠

ln 3
2

⎛
⎝

⎞
⎠



 

14 
 

account. In Figure 0.3, the height of cactus B is documented at different moments of a 

one-week period, specifically demonstrating a doubling (2-tupling) and then immediately 

a 1.5-tupling. It is worth noting that the 2-tupling and 1.5-tupling periods for cactus B are 

less than one week long and remain constant throughout this situation (with the 2-tupling 

period longer than the 1.5-tupling period). Also, for any portion of a week, say w weeks 

(where 0 < w < 1 ), cactus A will grow by a factor of 2w  and cactus B will grow by a 

factor of 3w , or 2w1.5w . That is, if w of a 3-tupling period has elapsed, then w of the 

corresponding cactus’ 2-tupling period will have elapsed and w of that same cactus’ 1.5-

tupling period will have elapsed. Therefore, what remains to be determined is how many 

of these 1-week periods need to elapse for the accumulated 1.5-tuplings to result in a 

14/5-tupling. The expression log1.5 (14 / 5)  represents this specific value. 

Figure 0.3. Cactus B at Different Moments Throughout the First Week  
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When a student engages in the essential constructs of quantitative reasoning she 

may also end up constructing the logarithmic properties on her own – possibly making 

them more meaningful to her. For example, suppose a saguaro’s height doubles (2-tuples) 

and subsequently triples (3-tuples). Overall, the saguaro’s height will grow by a factor of 

6 (i.e. experience a 6-tupling) (Figure 0.4). To conceive of this new tupling is an example 

of a quantitative operation. Then, the number of weeks needed for the cactus to 2-tuple 

(become 2 times as large) and then 3-tuple (become 3 times as large) will be the same as 

the number of weeks needed for the cactus to 6-tuple (become 6 times as large). This is a 

specific case of one of the logarithmic properties. If the 2-tupling period is one week, 

then symbolically we write log2(2) + log2(3) = log2(6) = log2(2 ⋅ 3) . A more detailed 

explanation of the other logarithmic properties can be found in my conceptual analysis. 

 

Figure 0.4. A Cactus’ Height Doubling and Then Successively Tripling 

For one to understand logb (x)  as representing a functional relationship in 

Thompson and Carlson’s (2017) sense, he must rely on the essential constructs of 
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quantitative reasoning. That is, he must first conceive of the quantities represented by b, x 

and logb (x) . Recall, using my definition, b and x both represent tuplings and logb (x)  

represents the number of b-tupling periods needed to result in an x-tupling. It is also 

worth noting here that the role of b is that of a parameter – staying consistent within a 

particular situation, but able to differ across situations. He must then conceive of the two 

quantities, x and logb (x) , as “varying simultaneously such that there is an invariant 

relationship between their values that has the property that, in the person’s conception, 

every value of one quantity determines exactly one value of the other” (Thompson & 

Carlson, 2017, pg. 33). This quantitative relationship can be modeled in two ways – 

x = by  or logb (x) = y , where y also represents the number of b-tupling periods needed to 

result in an x-tupling. Thus, if we know the value of y, we can determine the 

corresponding value of x using the first equation, and if we know the value for x, we can 

determine the corresponding value of y using the second equation. In addition to 

quantitative reasoning, covariational reasoning also plays a role in developing students’ 

meanings for the logarithmic function. 

Before I describe covariational reasoning in detail and discuss its role in the 

context of the logarithmic function, I will briefly describe its predecessor, variational 

reasoning. When one engages in variational reasoning, he is conceptualizing the value of 

a varying quantity. How he conceptualizes the value of a varying quantity may differ 

from another’s conception, however. Thompson and Carlson (2017) generated a 

framework that summarized six levels of variational reasoning. At the lowest levels of the 

framework, no variation in the quantity’s values is considered – either a variable is 
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viewed as a symbol that fails to take on any value, or it is viewed as an unknown. 

Students reasoning at the next two levels of the framework either only consider specific 

values that the varying quantity may assume, such as only considering the values 

presented in a table, or they imagine the quantity increasing or decreasing without 

considering any specific values whatsoever. A student reasoning at the fifth level of the 

framework, chunky continuous variation, conceptualizes the varying values of a quantity 

as changing by fixed intervals – similar to laying (possibly different-sized) rulers along a 

number line. In this case, the values within the interval hold a different meaning to the 

student than the values at the endpoints of the intervals, in the sense that the values within 

the interval “come along” with the interval. This way of thinking may be troublesome for 

students when working with exponential growth. For example, suppose the 4-tupling 

period of an exponential function is one week. A student reasoning at the chunky 

continuous level may struggle to imagine or identify the 3-day growth factor if their 

“interval rulers” are one week long. On the other hand, a student reasoning at the sixth 

level of the framework, smooth continuous variation, may also conceptualize the varying 

values of a quantity as changing by intervals, but the values at the endpoints of the 

interval and values within the interval hold the same meaning. In some sense, the student 

can recursively consider, or anticipate smaller intervals whose values (both endpoints and 

values within the interval) also vary in a similar, smooth and continuous, manner. These 

constructs are used in understanding Thompson and Carlson’s (2017) covariational 

framework. 

When a student conceptualizes two quantities’ values varying in tandem, he 

engages in covariational reasoning. Thompson and Carlson (2017) argued that 
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covariational reasoning is essential for students’ mathematical development. The authors 

also presented studies whose results suggested students experienced difficulties with 

functional relationships when they did not appear to engage in covariational reasoning 

and showed signs of improvement while engaging in covariational reasoning. Like 

variational reasoning, students can reason at a variety of levels. Thompson and Carlson 

(2017) generated a framework that summarized six levels of covariational reasoning. I 

describe each level and hypothesize how a student at that level may reason about a 

logarithmic function (Table 0.1). 

Table 0.1  

An Overview of the Covariation Framework with Logarithmic Examples 

Level Description Example of student reasoning using 
y = log2(x)   

No coordination 

The student focuses on one 
variable’s variation without 
conceptualizing 
simultaneous variation in the 
other variable 

The student may attend only to the 
x-tupling. For example, the student 
may claim that y = log2(16)
represents a 16-tupling. 

Precoordination 
of values 

The student conceptualizes 
two quantities’ values as 
varying, but not 
simultaneously. He imagines 
changes in one variable, 
followed by changes in the 
next. 

Assuming the 2-tupling period is 
one week, the student may conclude 
that if the x-tupling value changes 
from 2 to 16, then the number of 
weeks must change from 1 to 4. 

Gross 
coordination of 
values 

The student conceptualizes 
two quantities varying 
simultaneously, but in a 
gross variation manner – not 
considering specific values, 
but coordinating whether or 
not the quantities are 
increasing or decreasing. 

Assuming the 2-tupling period is 
one week, then as the overall x-
tupling value increases, the number 
of weeks needed to grow by that 
increasing factor must also increase. 
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Coordination of 
values 

The student coordinates one 
quantity’s values with the 
second quantity’s 
corresponding values. The 
student also anticipates 
forming an ordered pair with 
both values. 

Assuming the 2-tupling period is 
one week, then when the value of x 
is 16, or represents a 16-tupling, 
log2(16) = 4  means that 4 weeks, 
(i.e. four 2-tupling periods) have 
passed. This corresponds with the 
point (16,4). 

Chunky 
continuous 
covariation 

The student conceptualizes 
two quantities varying 
simultaneously, both in a 
chunky continuous manner. 

The student may envision the value 
of x varying in a chunky continuous 
manner with the intervals having 
endpoints that are whole number 
powers of two, corresponding with 
whole number values for log2(x) . 
Values of x and log2(x)  within the 
respective intervals do not hold the 
same meanings as those at the 
endpoints. 

Smooth 
continuous 
covariation 

The student conceptualizes 
two quantities varying 
simultaneously, both in a 
smooth and continuous 
manner. 

The student may envision the value 
of x varying in a smooth continuous 
manner with the intervals having 
endpoints that are whole number 
powers of two, corresponding with 
whole number values for log2(x) . 
Values of x and log2(x)within the 
respective intervals hold the same 
meanings as those at the endpoints. 
For example, the 3 in 
log2(3) ≈ 1.585  would represent a 
3-tupling (tripling) and the 1.585 
would suggest about 1.585 2-tupling 
(doubling) periods passed. 

 

  When one reasons covariationally, she is consciously aware of two quantities’ 

values varying in tandem (Carlson, Jacobs, Coe, Larsen, Hsu, 2002; Saldanha & 

Thompson, 1998) and may visualize this covariation by coupling the two quantities’ 

values in her mind as a new conceptual object. Thompson and Carlson (2017) refer to this 

coupling as a multiplicative object. A student who reasons in this way with the 
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logarithmic function may begin to develop connections across representational contexts. 

For example, he may view the values on the horizontal and vertical axes of the Cartesian 

plane as representing the varying values of x-tuplings and the number of b-tuplings 

needed to result in an x-tupling, respectively. He may then conclude that the graph of 

y = logb (x)  consists of infinitely many points whose ordered pairs represent the coupling 

of the two quantities’ corresponding values. In other words, each point making up the 

graph of y = logb (x)  is a visual representation of the student’s conceptualized 

multiplicative object. When this student observes a table of values relating x-tuplings 

with the number of b-tuplings needed to result in an x-tupling, he may also view each of 

the rows as representing the coupling of the two quantities’ values. It is worth noting that 

using tables as a representational tool for continuous functions may be limiting to 

students because tables do not take into account what happens in between the entries. 

Nevertheless, students who reason at the smooth continuous covariation level should be 

able to imagine both of the quantities’ values varying within the intervals presented by 

the table.  

  A student who has conceptualized the coupling of two quantities’ values in her 

mind as a new conceptual object may also develop an intellectual need for logarithmic 

(function) notation. That is, she may desire to represent her conceptualized multiplicative 

object in a way that does not require a table or graph. She may define x to be a tupling 

that can vary smoothly and continuously, but lack the tools needed to represent the 

number of b-tupling periods needed to result in an x-tupling. I hypothesize that a student 

in this state is likely to find logb (x)  to be more meaningful and may visualize the notation 
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in the following way: 
 

logb (x)
varying!

varying
"#$ %$ , or in the form of a formula, 

 

y
varying!

= logb (x)
varying!

varying
"#$ %$ . 

Research Literature on Students' Understandings of Exponents and the Exponential 
Function 

Viewing exponentiation as repeated multiplication is a primitive, yet insufficient 

interpretation. When the value of the exponent is a natural number, this conception is 

adequate. However, when the value is a non-natural real number, say −π, how might we 

interpret the exponent in this case? The interpretation of exponentiation as repeated 

multiplication fails to describe this case. While some researchers advocate a repeated 

multiplication approach (e.g. Goldin & Herscovics, 1991; Weber, 2002), others believe 

this approach limits students (e.g. Ellis, Ozgur, Kulow, Williams & Amidon, 2015; 

Davis, 2009; Confrey & Smith, 1995). In particular, Confrey and Smith (1995) argue that 

the standard way of teaching multiplication through repeated addition is inadequate for 

describing a variety of situations such as magnification, multiplicative parts (i.e. finding a 

fraction of a split), reinitializing and creating an array. Weber (2002) proposed that 

students first understand exponentiation as a process (in terms of APOS theory) before 

viewing exponential and logarithmic expressions as the result of applying the process. 

Once this reasoning ability is achieved, the student should be able to generalize the 

understanding to cases in which the exponent is a non-natural number. Specifically, 

Weber stressed to his students that “bx  represents the number that is the product of x 

many factors of b ” and that “ logb (m)  is the number of factors of b there are in m.” 
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Using this language conveys a more productive meaning7 of an exponent than merely 

viewing an exponent as repeated multiplication. For example, we can now describe 92.5  

to be the number that is the product of two and a half factors of 9, while under the view 

of repeated multiplication, a student might write “ 9 ⋅ 9 ⋅ ? ”. If a coherent understanding 

of exponential functions (and later logarithmic functions) is desired of our students, it is 

imperative that they have productive meanings for exponents. 

 Confrey and Smith (1995) presented a theoretical approach for understanding 

exponential functions emphasizing the use of two constructs: splitting and covariation. 

The construct of splitting is “a primitive model…that provides an operational basis for 

multiplication and division” (Confrey & Smith, 1995). Direction in the splitting structure 

suggests either multiplication or division (doubling vs. halving, etc.). The authors provide 

empirical evidence (students utilize the idea of halving to determine the area per child on 

a playground) that they claim suggests that splitting is an intuitive construct for 

multiplication and division. Confrey and Smith describe, compare and contrast two 

“worlds” of mathematics: the counting (additive) world, and the splitting (multiplicative) 

world. They briefly examine the history of Napier’s continuous approach for examining 

arithmetic and geometric sequences and note that it is important to identify the 

isomorphic attributes of the splitting world when one makes a discovery in the counting 

world. For example, the identity in the counting world is 0, while in the splitting world 

the identity is 1. They also note that a link between the two worlds is present – 

particularly that the counting world numbers are often used as index numbers for the 

                                                
7 There are issues with Weber’s (2002) definition. For example, the phrase “factors of b” may invite the 
students to consider the prime factorization of b. Also, the phrase “in m” is unclear. These issues led me to 
develop my modified definition of logarithm. 
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splitting world and that often counting numbers are used to represent the results of 

splitting (although not all the time – i.e. Richter scale). The origin of the counting world 

is 0 (acting as a boundary for positive and negative numbers) while the origin of the 

splitting world is 1 (acting as a boundary “between whole numbers and fraction values” 

(pgs. 76-77) when discussing powers). Often, with exponential functions, we have an 

initial value that is not 1 (our origin) – however, we can think of that initial value as 

being a whole (or 1) of something. 

Confrey and Smith (1995) compare and contrast the covariation approach to 

functions with the correspondence approach to functions. They claim that the 

correspondence approach is the approach that dominates curriculum – where the set 

theory definition of function is utilized, algebraic rules are emphasized and a 

directionality from x to f(x) is implied. On the other hand, they describe the covariation 

approach as considering two sets of data and the relationship between the sets. That is, 

this approach encourages the description of how one quantity varies in relation to another 

and allows for the discussion of rates of change, differences, and accumulation. In 

particular, exponential functions can be characterized as having constant multiplicative 

rates of change (Ellis et al., 2015). Confrey and Smith described how to produce 

exponential functions using splitting and covariation and conclude that the use of 

covariation, splitting and the idea of the isomorphism between the two worlds helps avoid 

concealing the relevant splitting unit/base that relates to the functional situation and helps 

avoid an overreliance on algebraic representation. 

Ellis et al. (2015) conducted a small-scale teaching experiment with three middle 

school students that examined continuously covarying quantities. The students were 
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asked to consider a scenario of a cactus named Jactus whose height doubled every week. 

Eventually, the initial height, weekly growth factor and amount of time needed to double 

were altered to provide variety. The authors noticed three significant shifts in the 

students’ thinking over the course of the study. At first, the students attended only to 

Jactus’ height and concluded he grew by means of repeated multiplication. Eventually, 

the students began to coordinate this repeated multiplication with the corresponding 

changes in the amount of time that elapsed. The second shift consisted of students 

determining the factor by which Jactus’ height grew for varying changes in the number of 

weeks by means of calculating the ratio of two heights. Finally, the third shift involved 

the students generalizing the reasoning noted in the second shift to include non-natural 

exponents (i.e. to determine the 1-day growth factor). The authors noted that a student’s 

ability to coordinate the growth factor (or ratio of height values) with the changes in 

elapsed time contributed to the student successfully defining the relationship between the 

elapsed time and Jactus’ height. This study leveraged findings from Ellis et al.’s study of 

Jactus the Cactus to promote more meaningful discussions on logarithms. 

Research Literature on Students' Understandings of the Idea of Logarithm and the 
Logarithmic Function 

The topics of logarithmic notation and logarithmic functions often pose a variety 

of challenges to students (Kenney, 2005; Weber, 2002). Similar to the complexities 

present in function notation, logarithmic notation consists of multiple parts each with 

their own dual nature (Kenney, 2005). As stated previously, in the equation y = logb (x) , 

b, x, and y take on a variety of meanings – b often takes on the form of a parameter 

(staying consistent within the context of a problem, but varying from problem to 
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problem), x serves as the input variable to the logarithmic function and is a tupling, and y 

serves as the output variable to the logarithmic function and is the number of b-tupling 

periods needed to result in an x-tupling. Kenney (2005) noted that because function 

names are often one letter, students do not naturally view log(x)  as representing an 

output to a function. Weber (2002) recognized these and other obstacles students 

encounter and conducted a pilot study that compared a traditional approach to teaching 

logarithmic functions with a more conceptual approach using technology (MAPLE) that 

introduced logb (m)  as the number of factors of b there are in m. Weber’s way of 

discussing the meaning of a logarithmic expression more clearly describes what the 

multiple parts of the notation represent - therefore addressing the issues Kenney observed 

in her study. However, Weber’s definition of logarithm may introduce other problems. 

For example, the phrase “factors of b” may invite the students to consider the prime 

factorization of b. Also, the phrase “in m” is unclear. These issues led me to develop my 

modified definition of logarithm.  

In addition to these unavoidable complexities, Kenney’s (2005) study uncovered 

other difficulties students have in understanding logarithmic notation. Kenny investigated 

students’ understandings of logarithmic notation in two phases (questionnaire and student 

interviews). The data revealed that students displayed mixed understandings of the bases 

in the expressions. For example, the students appeared to think that different bases 

always meant the logarithmic expressions were not equivalent (with the inputs being the 

same). However, when the expression involved the sum of logarithms, some students 

claimed equivalence because the bases would cancel out. Students also claimed that ln 
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was equivalent to log10 . One possible reason for this misconception is that both of these 

logarithmic bases appear on graphing calculators and are used when solving for the input 

to an exponential function. The study also revealed that students would disregard or 

“cancel out” the word “log” when simplifying equations involving logarithms and 

solving for x. Despite the aforementioned difficulties, a few of the students were 

successful in arriving at the correct answer. However, Weber (2002) found that this was 

an unlikely result of traditionally taught students.  

Weber’s (2002) pilot study examined the effects of non-traditional instruction of 

exponents and logarithms. The participants of the study were college students from two 

different college algebra and trigonometry classes at a university in the southern region of 

the United States. 15 students from each class voluntarily participated in the study. The 

first group of 15 students made up the control group and experienced traditional 

instruction on exponents and logarithms while the second group of 15 students 

participated in a more conceptually taught lesson lead by the author which incorporated 

the use of the program MAPLE. Students were taught a basic loop that used repeated 

addition to perform multiplications of integers and were later asked to write a similar 

program for exponentiation. Each class spent approximately the same amount of time 

covering the topics. Three weeks after instruction, students from each class were 

individually interviewed and asked a series of questions involving exponents, logarithmic 

expressions, logarithmic properties, and equations involving logarithmic expressions. 

While students in both groups were able to evaluate simple calculations, students in the 

experimental group were able to recall more properties of exponents and logarithms than 
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the control group. These students were also able to provide justifications for the 

properties - unlike the students in the control group. Weber found that the students who 

received more conceptually based instruction were more likely to catch their mistakes 

when it came to identifying and justifying properties of logarithms and exponents. 

This data emphasizes the importance and need for more coherent and 

conceptually taught lessons for exponents, logarithmic expressions and logarithmic 

functions. We are doing our students a disservice when we simply present them with a 

list of rules to memorize and expect them to remember everything at face value. 
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THEORETICAL PERSPECTIVE 

This chapter presents the theoretical perspective for this study. I begin by 

presenting my conceptual analysis for the idea of logarithm and conclude by discussing 

the theoretical perspective that informs my methods for my study. 

Conceptual Analysis 

Exponential and logarithmic relationships are two sides of a coin – when one 

discusses elements of one relationship, he is, in some form or another, discussing 

components of the other relationship as well. In this conceptual analysis, I examine a 

variety of aspects often categorized under exponential relationships because I see them as 

being important for one to come to understand the idea of logarithm and the logarithmic 

function. In particular, I develop the ideas of growth factor, the exponential relationship, 

tuplings and tupling periods, exponent, growth factor conversions, the exponential 

function, logarithmic notation, logarithmic properties and the logarithmic function. I also 

briefly examine a few prerequisite understandings one must have to make sense of these 

listed ideas. At the end of this section, I develop a hypothetical learning trajectory 

informed by my conceptual analysis.  

Division as Measurement 

Students must understand the construct of division as measurement. That is, to 

measure Quantity A in terms of Quantity B, we write Quantity A
Quantity B

. If Quantity A
Quantity B

= m , 

we say Quantity A is m times as large as Quantity B. As long as Quantity A and Quantity 

B are measured using the same unit, this ratio will remain constant. 
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Multiplying by A and Then Multiplying by B Has the Same Overall Effect as 

Multiplying by AB (×A× B = ×AB ) 

Students must have the understanding that multiplying by A and then multiplying 

by B is equivalent to multiplying by AB. For example, multiplying some value by 2 and 

then by 3 is equivalent to multiplying the value by 6. Therefore, if a value A-tuples 

(becomes A times as large) and then B-tuples (becomes B times as large), overall the 

value will AB-tuple (become AB times as large) (this claim is informed by my research in 

RUME IV).  

Growth Factor / The Exponential Relationship 

When comparing two values of the same quantity (say value A and value B), we 

can determine how many times as large one value is than another by calculating a 

quotient to evaluate a ratio
value A
value B

⎛
⎝

⎞
⎠ . If value B is m times as large as value A, then by 

convention we say the quantity grew by a factor of m, or became m times as large. In the 

future, I will refer to this as an m-tuple. Note: this is not to be confused with the 

definition of m-tuple as an ordered set of m numbers (in the m-dimensional Cartesian 

plane). Similarly, an m-tupling occurs when a quantity becomes m times as large. 

When one attends to the values of two varying quantities, Quantity A and 

Quantity B, and notices that for equal changes in the Quantity A, Quantity B grows by a 

constant factor, then there exists a geometric relationship between the two quantities. In 

the continuous case, we more specifically refer to the relationship between the two 

quantities as exponential. For the rest of this proposal, I assume continuity unless stated 

otherwise. 
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Tuples, Tuplings & Tupling Periods / Exponents / Growth Factor  

Conversions 

In this section, I discuss concepts foundational to exponential functions. I begin 

by developing a necessity for exponential notation and then argue how my definition for 

exponent is useful for converting from one growth factor to another growth factor (often 

called partial or n-unit growth factors).  

Recall that for two exponentially related quantities, for equal changes in one 

quantity, the other quantity grows by a constant factor. That is, for example, for any 

change of n in Quantity A, Quantity B will become b times as large (or b-tuples). By 

convention, we say the n-unit growth factor is b. However, we can also say that n is the 

b-tupling period, the amount/value of change of our input to our exponential function 

necessary for our output to b-tuple, or become b times as large. If m b-tupling periods 

have elapsed (that is, nm units of the input quantity), then by convention, we write bm  to 

represent the factor by which the quantity grows in that period. It is worth noting that this 

interpretation for exponents differs from the repeated multiplication approach because it 

takes into account all real values of m. For example, suppose the 4-tupling (or 

quadrupling) period for a population is one week and suppose 1.5 weeks elapse, then the 

factor by which the population grew over the course of the 1.5 weeks can be expressed as 

41.5 (which is equivalent to 8). Or, suppose that for every 1 radian a dial rotates, the 

amount of frozen yogurt dispensed from a machine 1.5-tuples. Then if the dial rotates an 

angle of π  radians, the amount of frozen yogurt dispensed from a machine will 1.5π  -

tuple.  
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Ellis and colleagues (2015) found that before students were able to reason with 

non-natural number exponents, they first had to reason with natural number exponents. 

Therefore, as students are beginning to conceptualize the idea of exponent, it may be 

necessary to present students with cases where m, the number of elapsed b-tupling 

periods, is a natural number. For example, suppose the 3-tupling (or tripling) period for a 

population is 1 week and suppose 2 weeks (two 3-tupling periods) have elapsed, then the 

factor by which the population grows over the 2 weeks is 3× 3 = 9 . To represent the case 

where two 3-tupling periods have elapsed we can also write 32 . In this instance, it is easy 

to calculate the 2-week growth factor – however, this is not always the case.  

Still assuming the 1-week growth factor is 3, suppose we now wish to represent 

the 1-year, or 52 week growth factor. We need a way to represent the growth factor that 

corresponds to the case where 52 3-tupling periods have elapsed; specifically, we write 

352. Similar reasoning can be employed to determine the 1-day, or 1/7th week growth 

factor. To represent the case where 1/7th of a 3-tupling period has elapsed, we write 31/7. 

In both of these cases, we let the exponent on 3 to represent the number of elapsed 3-

tupling periods (weeks). This reasoning remains consistent for exponents less than or 

equal to zero, too. For example, in the case where no time has elapsed, the population 

would not change (i.e. grow by a factor of 1); this corresponds with the equation 30 = 1 . 

If the change in the number of weeks is -3 (i.e. we are looking “back in time” for a total 

of 3 weeks), then the -3 week growth factor is 3-3 or 1/27 (since over the 3 weeks prior to 

when 0 weeks have elapsed, the population would both become 1 and would increase by 

a factor of 27). In general, if we let x represent the number of elapsed 3-tupling periods 
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(weeks), then 3x  represents the x-week growth factor. 

The Exponential Function 

In this section, I describe how one might come to define an exponential function. 

To productively discuss the ideas in this section, students must have an understanding for 

division as measurement and growth factors, they must conceptualize exponents to 

represent a number of elapsed tupling periods, understand how to represent changes in 

quantities’ values, and recognize that for exponential relationships between two 

quantities, for equal changes in one quantity, the other quantity grows by a constant 

factor.  

Suppose (x1, y1) and (x, y) are points that satisfy an exponential relationship. Since 

y is y/y1 times as large as y1, and since the relationship is exponential, then for any change 

of x-x1 in the input quantity, the output quantity will become y/y1 times as large. 

Similarly, if the 1-unit growth factor is b, then for any change of x-x1 in the input 

quantity, the corresponding growth factor will be bx−x1 . Therefore, we can conclude 

y
y1

= bx−x1  (the two different expressions representing the same growth factor are 

equivalent), or y = y1b
x−x1   (y is bx−x1  times as large as y1). In the case where (x1, y1) is the 

vertical intercept, say (0, a), we have y = abx . Therefore, if f (x) = y  , then f (x) = abx , 

where a is the initial value of the output quantity and b is the 1-unit growth factor. 

Consider Sparky, a saguaro cactus whose height is growing exponentially. If Sparky was 

5 feet tall when he was purchased and 10 feet tall one week later, then in one week, he 

became 2 times as large. Thus, the one-week growth factor is 2. If we wish to define the 
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relationship relating the number of weeks since Sparky’s purchase, x, and his height in 

feet, y, we can use the reasoning described above to conclude y
5
= 2x−0  or y = 5(2)x . 

Logarithmic Notation 

Recall exponential functions have the quality that, for equal changes in the input 

quantity, the output quantity grows by a constant factor. That is, for any change of n in 

the input quantity, the output quantity will b-tuple, or become b times as large. By 

convention, we say the n-unit growth factor is b. However, we can also say that n is the 

b-tupling period, the amount/value of change of our input to our exponential function 

necessary for our output to become b times as large.  

Often, when working with exponential functions, students are given explicit 

information about only one growth factor. This may be the one-year growth factor, the 

three-day growth factor, etc. This information also informs the student of a tupling 

period. For example, if the one-week growth factor is 2, then the 2-tupling period is one 

week. However, in a situation where the 2-tupling period is one week, a student may be 

interested in determining the number of weeks necessary to 10-tuple, or become 10 times 

as large (based on information presented in the task at hand). In this case, the 10-tupling 

period will be longer than the 2-tupling period (1 week), but can still be measured using a 

one-week unit of measure (or the 2-tupling period). However, since 10 is not a power of 

2, this value can be difficult to calculate. Moreover, in general, determining the change in 

the input of an exponential function necessary for the initial value of the function to m-

tuple, or become m times as large, is not a trivial task. That is, there is no simple rule that 

provides instructions on how to calculate the m-tupling period. However, with the use of 
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modern technology, these calculations are possible. The 10-tupling period and the e-

tupling period are the most common units used to measure all other tupling periods. 

However, any tupling period can be used to measure the change in input necessary for the 

initial value of the function to m-tuple. For example, if the 3-tupling period is one day, 

we can use it to measure the 27-tupling period (3 days). In general, we write logb (m)  to 

represent the number of b-tupling periods it takes the initial value of our exponential 

function to result in an m-tupling.  

Logarithmic Properties  

We start with the meaning of “ logb (x)” being “the number of b-tupling periods 

needed to result in an x-tupling”. After being presented with logarithmic notation, 

students are often asked to manipulate logarithmic expressions or equations using one or 

more of the following logarithmic properties: 

1. logb (X) + logb (Y ) = logb (XY )   

2. logb (X) − logb (Y ) = logb (X /Y )  

3. logb (X
y ) = y logb (X)  

4. logb (X) =
logc(X)
logc(b)

 (or more accurately, 
logb (X)
logb (Y )

= logc(X)
logc(Y )

) 

5. logb (b
x ) = x    

6. blogb (x ) = x   

The understanding that multiplying by X and then multiplying by Y is equivalent 

to multiplying by XY is foundational to understanding the first logarithmic property. 

Therefore, if a value experiences an X-tupling and then experiences a Y-tupling, overall 
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the value will experience an XY-tupling. If we let TX represent the X-tupling period, TY 

represent the Y-tupling period, and TXY represent the XY-tupling period (each not yet 

measured in a specified unit), then TX + TY = TXY  . Therefore, the number of b-tupling 

periods needed to result in an XY-tupling is equal to the number of b-tupling periods 

needed to result in an X-tupling plus the number of b-tupling periods needed to result in a 

Y-tupling, or logb (X) + logb (Y ) = logb (XY ) . If we consider a mystical cactus named 

Sparky whose height 2-tuples each week, and suppose his height experiences a 2-tupling 

and suppose his height then experiences an 8-tupling after the 2-tupling. His 2-tupled 

height will become 8 times as large. His height will have become 16 times as large as it 

was before it 2-tupled, for an overall 16-tuple in height. The number of weeks (2-tupling 

periods) needed to result in a 2-tupling (1 week) followed by the number of 2-tupling 

periods to result in an 8-tupling (3 weeks) will be the number of 2-tupling periods needed 

to result in a 16-tupling (4 weeks). Symbolically, we represent this case as 

log2(2) + log2(8) = log2(16) .  

To understand the second logarithmic property, one can build off the first 

logarithmic property and the understanding that X is X/Y times as large as Y. That is, if a 

value experiences a Y-tupling and then experiences an X/Y-tupling after the Y-tupling, the 

Y-tupled value will become X/Y times as large. Therefore, the value will have become X 

times as large as it was before it Y-tupled, for an overall X-tuple. If we let TX represent 

the X-tupling period, TY represent the Y-tupling period, and TX/Y represent the X/Y-tupling 

period (each not yet measured in a specified unit), then TX /Y + TY = TX . Therefore, the 

number of b-tupling periods needed to result in an X-tupling is equal to the number of b-
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tupling periods needed to result in an X/Y-tupling plus the number of b-tupling periods 

needed to result in an Y-tupling, or logb (X) = logb (X /Y ) + logb (Y ) . Alternatively, 

logb (X /Y ) = logb (X) − logb (Y ) . Considering the same example used for the first 

logarithmic property, we can calculate the number of weeks needed for Sparky’s height 

to experience an 8-tupling by subtracting the number of weeks (2-tupling periods) needed 

for Sparky’s height to experience a 2-tupling from the number of weeks (2-tupling 

periods) needed for Sparky’s height to experience a 16-tupling. 

The understanding that an exponent on a value, X, to represent the number of X-

tupling periods that have elapsed is foundational to understanding the third logarithmic 

property. That is, if a value experiences y X-tupling periods, then overall the value will 

experience an Xy-tupling. If we let TX represent the X-tupling period and TX
y represent the 

Xy-tupling period (both not yet measured in a specified unit), then T
Xy = yTX . Therefore, 

the number of b-tupling periods needed to experience an Xy-tupling is y times as large as 

the number of b-tupling periods needed to experience an X-tupling, symbolically 

logb (X
y ) = y logb (X) . The number of weeks (2-tupling periods) needed to result in a 2-

tupling 5 times ( log2(2
5 ) ) is 5 times as large as the number of 2-tupling periods needed 

to result in a 2-tupling ( 5 log2(2) ). 

A less discussed, but useful property of logarithms is the change of base relation. 

This property is used to rewrite logarithmic expressions using a different base value, 

often as an alternative way of calculating the exact value, and is frequently presented as 

logb (X) =
logc(X)
logc(b)

. To understand this property, students must have the understanding 
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that A is A/B times as large as B. Therefore, if we let TX represent the X-tupling period 

and TY represent the Y-tupling period (each not yet measured in a specified unit), then TX 

is TX /TY times as large as TY. This relationship will not change based on the units used to 

measure either tupling period. That is, if we suppose b>0 and use the b-tupling period to 

measure the X- and Y- tupling periods, then the X-tupling period will always be 
logb (X)
logb (Y )  

times as large as a Y-tupling period. Put another way, 
logb (X)
logb (Y )

= logc(X)
logc(Y )

. Notice, if we 

let Y = b, then logb (X) =
logb (X)
1

= logb (X)
logb (b)

= logc(X)
logc(b)

. Considering the same example 

used for the previous logarithmic properties, the 3-tupling (tripling) period measured in 

weeks is about 1.585 and the 2-tupling (doubling) period measured in weeks is 1. 

Therefore, the number of weeks needed to 3-tuple (1.585 weeks) is 1.585/1 times as large 

as the number of weeks needed to 2-tuple (1 week). Alternatively, since the number of 

days will always be 7 times as large as the number of weeks, then the 3-tupling (tripling) 

period measured in days is 1.585(7) = 11.095  and the 2-tupling (doubling) period 

measured in days is 1(7)=7. Thus, the number of days needed to 3-tuple (triple) will be 

11.095 / 7 = 1.585  times as large as the number of days needed to 2-tuple (double). In 

general, the 3-tupling (tripling) period will always be approximately 1.585 times as large 

as the 2-tupling (doubling) period. If we were to measure these periods in weeks, days, 

years, or any other appropriate measurement the relationship would still be true. That is, 

log2(3)
log2(2)

= log1.1(3)
log1.1(2)

=
log

252
(3)

log
252
(2)

= logc(3)
logc(2)

≈ 1.585 .  
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The understanding that the exponent on a value, b, represents the number of b-

tupling periods that have elapsed is foundational to understanding the last two 

logarithmic properties. Therefore, to represent that x b-tupling periods have elapsed, one 

writes bx . Students must also understand that bx  may also represent a bx -tupling. 

Additionally, the understanding that logb (m)  represents the number of b-tupling periods 

needed to result in an m-tupling is also foundational to understanding the last two 

logarithmic properties. Therefore, since bx  conveys that x b-tupling periods have elapsed 

and also conveys a bx -tupling, then the number of b-tupling periods needed to result in a 

bx -tupling is x. Symbolically, we write logb (b
x ) = x . On the other hand, if a value b-

tuples logb (x)  many times, the number of b-tupling periods needed to result in an x-

tupling, overall the value will x-tuple. Symbolically, we write blogb (x ) = x .  

The Logarithmic Function 

To conceptualize the logarithmic function in Thomspon and Carlson’s (2017) 

sense, one must first understand b and x to represent tuplings and logb (x)  as representing 

the number of b-tupling periods needed to experience an x-tupling. He must then 

conceive of the x-tupling and the number of b-tupling periods needed to experience the x-

tupling as “varying simultaneously such that there is an invariant relationship between 

their values that has the property that, in the person’s conception, every value of one 

quantity determines exactly one value of the other” (Thompson & Carlson, 2017, pg. 33). 

In particular, if we know the value for x, we can determine the corresponding value of 

logb (x) , given a value for b. That is, for any given tupling, there will be exactly one 

number of b-tupling periods that are needed to achieve the same growth. 
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The following taxonomy (Table 0.2) summarizes the components to 

understanding the idea of logarithm along with the final understandings students should 

hold for each one. 

Table 0.2 

Taxonomy of the Idea of Logarithm 

Component of the idea of Logarithm Desired understanding 

Division as measurement To measure Quantity A in terms of Quantity B, we 

write Quantity A
Quantity B

. If Quantity A
Quantity B

= m , we say 

Quantity A is m times as large as Quantity B. 
Multiplying by A and then multiplying by B has 
the same overall effect as multiplying by AB. 

 

If a value A-tuples (becomes A times as large) and 
then B-tuples (becomes B times as large), overall 
the value will AB-tuple (become AB times as 
large). 

Growth Factor When coordinating the values of two quantities, if 
the value of the first quantity increases by n-units 
while the next value of the second quantity is m 
times as large as its current value, then the n-unit 
growth factor is m. 

The Exponential Relationship When relating two continuous quantities, Quantity 
A and Quantity B, if for equal changes in Quantity 
A, Quantity B grows by a constant factor, then the 
two quantities have an exponential relationship.  

Tuples (VERB) If the value of a quantity becomes m times as 
large, we say the quantity’s value m-tuples.  

Tuplings (NOUN) An m-tupling is the event in which the value of a 
quantity becomes m times as large. 

Tupling period An m-tupling period is the amount of change in the 
independent quantity needed for the dependent 
quantity to become m times as large. 

Exponent (on a value, b) The number of elapsed b-tupling periods. 
Symbolically, this value is written superscript to b. 

Growth Factor Conversion The factor by which a quantity will grow over x,  
b-tupling periods is represented as bx . If c1 = bx , 
then one c-tupling period is the same as x b-tupling 
periods.  

 

×A× B = ×AB
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The Exponential Function The function f (x) = abx  relates two quantities 
“varying simultaneously such that there is an 
invariant relationship between their values that has 
the property that, in the person’s conception, every 
value of one quantity determines exactly one value 
of the other” (Thompson & Carlson, 2017, pg. 33) 
where x represents the varying values of the first 
quantity, a represents the initial value of the 
second quantity, and b represents the 1-unit (of the 
first quantity) growth factor.  

Logarithmic Notation logb (X)  represents the number of b-tupling 
periods it takes (the initial value of an exponential 
function) to result in an X-tupling. 

LP1: logb (X) + logb (Y ) = logb (XY )   The number of b-tupling periods needed to result 
in an XY-tupling is the same as the number of b-
tupling periods needed to result in an X-tupling 
plus the number of b-tupling periods needed to 
result in a Y-tupling. 

LP2: logb (X) − logb (Y ) = logb (X /Y )  The number of b-tupling periods needed to result 
in an X/Y-tupling is the same as the number of b-
tupling periods needed to result in an X-tupling 
minus the number of b-tupling periods needed to 
result in a Y-tupling. 

LP3: logb (Xy ) = y logb (X)  The number of b-tupling periods needed to 
experience an Xy-tupling is y times as large as the 
number of b-tupling periods needed to experience 
an X-tupling. 

LP4: logb (X) =
logb (X)
logb (b)

= logc(X)
logc(b)

 
The X-tupling period will always be k times as 
large as the b-tupling period (this value does not 
depend on the unit chosen to measure both the X- 
and b-tupling periods).  

LP5: logb (bx ) = x  The number of b-tupling periods needed to 
experience a b-tupling, x times, is x. 

LP6: blogb (x ) = x  If a value b-tuples logb (x) times, the number of b-
tupling periods needed to result in an x-tupling, 
overall the value will x-tuple. 

The Logarithmic Function A covarying relationship between an x-tupling and 
the number of b-tupling periods needed to 
experience an x-tupling ( logb (x)  ). These two 
quantities vary in such a way that every value of 
the x-tupling determines exactly one value of the 
number of b-tupling periods needed to experience 
an x-tupling. 

 

Theoretical Perspective 

I begin this section with a brief discussion of radical constructivism (Glasersfeld, 

1995), the theoretical perspective that informs the teaching experiment methodology. A 
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central claim of radical constructivism is that knowledge is constructed in the mind of an 

individual and therefore cannot be directly accessed by anyone else. Steffe and 

Thompson (2000a) refer to an individual’s mathematical reality as “student’s 

mathematics.” If students’ mathematics were accessible to researchers, there would be 

little need for mathematics education research. Therefore, at best, researchers can attempt 

to form a model of students’ thinking, referred to as “mathematics of students.” A model 

is considered reliable when the student’s utterances, written work, and movements are in 

alignment with the model. However, to say one has developed the mathematics of a 

student is not the same as stating that a model directly represents a student’s mathematics 

(this is an impossible goal).  

In a study of student learning, one must decide on a theory of knowledge and a 

theory of learning to inform her hypotheses, data collection and analysis. Researchers 

who choose different theories to inform their studies will usually have different 

conjectures, methods and findings. Under the theoretical perspective of radical 

constructivism, where individuals construct their own knowledge, the researcher will 

design her study to center around the constructions made by the subject. If the subject 

responds in a way that is mathematically incorrect, the researcher will be interested to 

explore the ways in which the student was thinking for his claims to make sense to him. 

Under a different theoretical approach, perhaps where knowledge is something to be 

found, the researcher might disregard the student’s incorrect claims and simply conclude 

that the student has not yet made the necessary mathematical discoveries. Piaget’s genetic 

epistemology (2001) is a theoretical framework that works well with the teaching 

experiment methodology used in this study. The framework focuses on both “what 
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knowledge consists of [cognitive structures - schemes] and the ways in which knowledge 

develops [how those structures come into existence]” (Piaget, 2001, p. 2). When a 

researcher develops the mathematics of a student, she is trying to model the student’s 

cognitive structures that comprise knowledge, known as schemes. These structures are 

organizations of mental actions or mental operations (reversible actions) and may even be 

complex and contain other schemes (Piaget, 2001). An action is “all movement, all 

thought, or all emotion – [that] responds to a need” (Piaget, 1967, p. 6). Researchers rely 

on a student’s observable actions when attempting to form models of his schemes, such 

as utterances, written work, movements or body language.  

Researchers who are interested in how a student comes to learn a particular idea 

must also try and model what the student does with his schemes. When a student applies 

a scheme to a particular environment and achieves outcomes that do not conflict with his 

anticipated results, he assimilates the environment to the scheme. In cases of assimilation, 

no noteworthy learning takes place because the student remains in a state of equilibrium. 

However, if the student achieves outcomes that conflict with his anticipated results, the 

assimilation is unsuccessful and he will be in a state of disequilibrium. To cope with his 

unrest, the student may modify the scheme he originally applied to the environment or he 

may create a new scheme altogether (Piaget, 2001). Learning takes place when either of 

these accommodations occurs. Piaget went on to develop more constructs to discuss the 

development of knowledge. 

Piaget specified that students abstract knowledge in a variety of ways. For 

instance, when a student makes an empirical abstraction, he abstracts knowledge from an 

object (mentally constructed in his mind) such as color, size, weight, etc. (Thompson, 
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1985). When a student makes a pseudo empirical abstraction, he attends only to the 

results of actions he has performed. For example, when solving the equation 

234 = 54(1.5)x  for x, a student may arrive at the answer x = ln(234 / 54)
ln(1.5)

 and conclude 

that all solutions to problems beginning as y = a(b)x  will be of the form x = ln(y / a)
ln(b)

. On 

the other hand, when the student distinguishes an action from the initial and resulting 

stages (differentiation), creates an action to represent this differentiated action 

(projection), or coordinates these new actions together (coordination/integration), he has 

made a reflective abstraction (Piaget, 2001). In the previous example, if the student had 

instead reflected on what each step of his solution represented and why the actions 

involved calculated those values, his abstraction would likely have been classified as a 

reflective abstraction. Piaget (2001) labeled this level of thinking to be more advanced 

than thinking involved in making empirical and pseudo-empirical abstractions. 

Furthermore, if the student then chose to reflect on his reflective abstraction to form a 

generalization he will have made a reflected abstraction. Finally, thematization occurs 

when the subject is able to provide an outline of an activity without needing to provide 

the minor details. Researchers who are interested in using the teaching experiment 

methodology to model student learning (i.e. cognitive structuring and restructuring) 

should make sure to provide students with opportunities for reflection (Derry, 1996). 

Throughout my study, I will attempt to model the participants’ knowledge development 

of the idea of logarithm. I will focus on the abstractions I believe must be made in order 

to develop a coherent model of logarithmic functions. I will then argue why and at what 
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points I believe the participants of my study experience different types of abstraction as a 

means of explaining their paths of knowledge development.  
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METHODOLOGY 

Teaching Experiment 

Two of the overall goals for researchers using teaching experiments are to 

develop models of students’ mathematics and to understand the progress students make 

over an extended period of time (Steffe & Thompson, 2000a). This is a step up from 

Piaget’s clinical interview, where researchers only attempt to model the student’s current 

thinking. Developing the mathematics of students throughout a teaching experiment is a 

demanding task involving much scrutiny. Hypotheses of student thinking must be 

developed, tested, revised, and tested again until a reliable model is formed. This process 

is never quite finished during teaching experiments because the researcher is interested in 

the development of the student’s thinking over the course of the experiment. Therefore, 

once a reliable model has been formed, the researcher can form a new hypothesis for how 

the student will act in a different mathematical scenario. While the researcher interacts 

with the student, she should expect to encounter a few constraints. For example, the 

language and actions exhibited by the students may perplex the researcher. However, this 

constraint is valuable when trying to develop the mathematics of students because the 

language and actions of the students are informed by the students’ mathematics. 

Researchers should also expect to encounter moments when students “hit a wall” in their 

thinking. When a student can’t seem to move forward in his thinking, despite the 

assistance of the researcher or other medium, he makes what are considered to be 

essential mistakes. Essential mistakes made by the student can serve to assist the 

researcher in identifying the boundaries of the mathematics of the student (Steffe & 

Thompson, 2000a). When a student makes what appears to be an essential mistake during 
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a teaching experiment, the researcher’s goal should be to try and understand and model 

what the student can do and how the student must be thinking for his actions to make 

sense to him.  

Before conducting a teaching experiment, it is recommended that researchers 

conduct exploratory teaching (Steffe & Thompson, 2000a). One of the purposes of 

exploratory teaching is to form a reliable model of the student’s current thinking; this 

phase will inform the researcher of the student’s initial way of thinking and will help the 

researcher develop hypotheses to test throughout the teaching experiment. When using 

this methodology in a study of student learning of ideas of logarithm, properties of 

logarithms, logarithmic growth, and logarithmic functions, the exploratory teaching stage 

may let the researcher explore students’ understandings of prerequisites to the idea of 

logarithm, such as division as measurement or that multiplying by A and then multiplying 

by B has the same overall effect as multiplying by AB. During this stage, the researcher 

may find that the student makes essential mistakes with these or other topics and may 

hypothesize ways in which the student may respond to logarithmic tasks throughout the 

upcoming episodes in the teaching experiment.  

Teaching experiments are made up of a series of recorded teaching episodes, a 

teaching agent, one or more students, a witness and designated time in between episodes 

to conduct retrospective analyses (Steffe & Thompson, 2000a). The role of the teaching 

agent is multifaceted. Prior to each teaching episode, the teaching agent should have 

hypotheses about the student’s thinking and how that thinking will affect the student’s 

utterances, movements, and written work. The teaching agent should also develop a 

series of tasks designed to test her hypotheses. However, during the teaching episode, the 
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teaching agent needs to temporarily set her hypotheses aside so that she can focus on 

what is actually happening. She must also be prepared to go down paths in which she was 

unprepared for – for if she knew where everything was going to lead, there would be no 

point to doing the research. When the teaching agent goes along with a student’s claim 

without knowing where it is headed or tries to decenter (Piaget, 1955; Steffe & 

Thompson, 2000b; Carlson, Bowling, Moore & Ortiz, 2007) in an effort to explore the 

student’s reasoning, she is engaging in what is called a responsive and intuitive 

interaction. On the other hand, when the teaching agent initiates discussions with the 

student to compare the student’s response to a hypothesized action, she is engaging in 

what is called an analytical interaction. After the student responds, the teaching agent 

may have to modify her hypotheses and introduce new situations so that she can continue 

to model the student’s thinking (either on the fly or during the next session). 

The teaching agent should try to engender generalizing assimilations, functional 

accommodations, or developmental accommodations in the student throughout the 

teaching episodes. An assimilation is generalizing when the scheme involved is used in 

situations that the student would deem familiar, but include novel (from the researcher’s 

perspective) elements. In cases of generalizing assimilation, students may have to make 

minor accommodations to their schemes. Functional accommodations occur when the 

student uses his scheme in a new way or develops new operations. The teaching agent 

may engender developmental accommodations when she presents a student with a task 

that, in the researcher’s perspective, contain elements that are beyond the scope of the 

student’s schemes. In order for the student to solve the tasks, he would need to conduct a 

major reorganization of his schemes. Such tasks can also be used to analyze the 
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developmental stage of the student (Steffe & Thompson, 2000a). 

Steffe and Thompson (2000a) share a couple techniques used by teaching agents 

during teaching episodes to check in with the student’s progress. One technique is to 

share with the student what “another student” (real or imaginary) claimed; this may 

evoke some level of doubt within the student and may help the researcher in identifying 

boundaries of the mathematics of the student. Another technique is to ask the student to 

anticipate what will happen after a certain operation is performed. For example, I’ve 

programmed my Sparky the Saguaro Geogebra applet to display two cacti some number 

of weeks apart. If “1” is typed in the “Weeks Before” box, the screen will display two 

cacti named “Sparky” and “Weeks Before” that are one week apart. Because the 2-

tupling period is set to be one week, the “Sparky” cactus will be 2 times as tall as the 

“Weeks Before” cactus. When the animation is running, the horizontal distance between 

the two cacti will remain constant (1), and the “Sparky” cactus will always be 2 times as 

tall as the “Weeks Before” cactus. Therefore, I could ask the interviewee how he thinks 

the animation will change when we type in log2(3)  in the “Weeks Before” box. How the 

student responds may shed light on his interpretation of logarithmic notation. In this case, 

the animation will display two cacti, about 1.585 weeks apart and the “Sparky” cactus 

will be 3 times as tall as the “Weeks Before” cactus because log2(3)  represents the 

number of 2-tupling periods (weeks) needed for the height to experience a 3-tupling 

(tripling).  

After each teaching episode, the teaching agent conducts a retrospective analysis. 

This stage in the teaching experiment is particularly important and must be adequately 
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planned for (Steffe & Thompson, 2000a). During the retrospective analysis, the teaching 

agent reviews the recordings of the previous teaching episode(s) and analyzes the 

student’s utterances, written work, and movements, to develop a model of the student’s 

mathematics. The teaching agent develops mental records of the interactions made with 

the student during the episodes, but may not remember every detail. When the teaching 

agent conducts a retrospective analysis, she may recall a realization she made during the 

episode regarding the student’s thinking that she otherwise may have forgotten. During 

this stage, the teaching agent revisits the hypotheses she set aside (modifying them as 

needed), creates new tasks to test her models in future episodes and develops hypotheses 

of how the student will respond to such tasks. If the teaching agent believes she has 

developed a reliable model of the student’s thinking, she might design tasks that present 

the student with opportunities to reexamine and modify his thinking. During these stages 

of the teaching experiment, the teaching agent can also rely on the witness for additional 

assistance and outside opinions. 

During a teaching experiment, the witness observes the interactions between the 

teaching agent and the student. When the teaching agent is engaged in responsive and 

intuitive interactions with the student, the witness is able to analyze the interactions from 

an outside perspective. During the retrospective analysis stage, the witness may offer 

insight that the teaching agent may have otherwise missed. The teaching agent may also 

call on the witness during the teaching episode for additional questioning and assistance. 

For example, if the student makes what appears to be an essential mistake and can’t seem 

to move forward, despite the assistance of the teaching agent, the witness can be asked to 

intervene and ask questions that address the student’s thinking from a different angle.   
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In a study of student learning at the undergraduate level of the idea of logarithm, 

properties of logarithms, logarithmic growth, and logarithmic functions, the researcher 

must be prepared to encounter students who have already developed schemes for 

exponent, the idea of logarithm, etc. For example, during the exploratory teaching stage 

of the experiment, the teaching agent may find that the student views exponents as 

representing repeated multiplication; this interpretation can lead to confusion for the 

students when the exponent is not a natural number (Confrey & Smith, 1995; Weber, 

2002; Davis, 2009; Ellis, Ozgur, Kulow, Williams & Amidon, 2015). In this case, the 

teaching agent can develop tasks to provide the student opportunities to make an 

accommodation to his scheme for exponent. If the student has been previously introduced 

to Euler’s definition of logarithm in a previous course, he may be inclined to rewrite 

logarithmic equations using exponential equations to eliminate the logarithmic notation 

(Kenney, 2005). Researchers can counter this inclination by presenting a situation to the 

student where using exponential notation does not simplify the task. 

If the researcher decides to incorporate the use of technology in her teaching 

experiment, such as a Geogebra applet, it will serve her well to be as fluent with the 

technology as possible. During her interactions with the student, she may see a need to 

use the technology to visually represent how she is interpreting the student’s descriptions. 

For example, last year I conducted some exploratory teaching using my Sparky the 

Saguaro Geogebra applet with a student I will call Mike. Mike was discussing the percent 

change in Sparky’s height from one moment to the next and was referring to some 

measuring lines I had previously programmed in the applet. Based on Mike’s utterances, 

I hypothesized that he was envisioning more measuring lines during his discussion of 
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percent change. I decided to program what I believed he was imagining to check my 

hypothesis. This skill may also be useful if the teaching agent wishes to test or challenge 

the student’s thinking, or create a new situation “on the fly.” 

Researchers using the teaching experiment methodology must also take into 

consideration what activities the student will be engaged in between teaching episodes. If 

the student will be working on homework assignments between meetings, he may make 

accommodations to his schemes or make abstractions not witnessed by the teaching agent 

(as seen in Thompson, 1994). However, if the researcher does not offer homework in 

between episodes, it will not guarantee that the student will not advance his thinking 

before the next session. Therefore, the teaching agent must accept that she may not be 

present when the student makes important abstractions or accommodations. 

Hypothetical Learning Trajectory 

The construct of hypothetical learning trajectory (HLT) (Simon, 1995; Simon & 

Tzur, 2004) was originally developed to assist educators in planning mathematics lessons 

and eventually was modified to include a framework for the learning process. HLTs 

consist of a list of learning goals for students, tasks intended to promote such learning 

goals, and hypotheses about student learning within the mathematical context. Simon & 

Tzur (2004) were inspired by Piaget’s construct of reflective abstraction and refined the 

construct of HLT to include an outline of the learning process. The authors emphasized 

that a student learns (develops new ways of thinking) when she reflects on her actions 

when completing tasks and the effects of those actions. In Table 0.3, I organized my HLT 

by presenting a task, the goal(s) for student learning that the task promotes, and a 

discussion on the role of the task in Simon & Tzur’s (2004) framework for learning. It is 
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worth noting that this HLT was developed using my conceptual analysis. The HLT 

outlines one possible trajectory students might take while developing an understanding of 

the idea of logarithm. In a later section, I discuss how during a teaching experiment 

researchers must be open to modifying their tasks and trajectory based on the student’s 

responses. 
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Table 0.3 

HLT for the Idea of Logarithm and the Logarithmic Function 

Task 
i. Cactus C (A, D) is how many times 

as tall as Cactus B? 
ii. Cactus B is how many times as tall 

as Cactus C (A, D)?  
iii. Given any two cacti, describe how 

you determine how many times as 
tall one is than the other? 

iv. Draw Cactus E given Cactus E is 5.5 
times as tall as Cactus B. 

v. Draw Cactus F given Cactus C is 3 
times as tall as Cactus F. 

vi. If Cactus B is 8 inches tall, how tall are Cacti A, C, D and E? 
vii. Cactus H is how many times as tall as Cactus G if Cactus G is 34 inches tall and Cactus H is 102 

inches tall? 
 

viii. Cactus I is how many times as tall as Cactus J if Cactus J is x inches 
tall and Cactus I is y inches tall? 
 

ix. How would you describe the cactus’ growth in the diagram to the 
right given that the cactus on the left grew to be the cactus on the 
right? 
 

x. If a cactus was 23 inches tall when it was purchased and grew to be 
156 inches tall, by what factor did the cactus grow? 

xi. If a cactus was m inches tall when it was purchased and grew to be k 
inches tall, by what factor did the cactus grow? 
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Learning Goal(s) 
Division as Measurement:  
Student will understand that to measure Quantity A 
in terms of Quantity B, we write . If 

, we say Quantity A is m times as 

large as Quantity B. As long as Quantity A and 
Quantity B are measured using the same unit, this 
ratio will remain constant. 
 
Growth Factor: 
Student will understand that to determine how many 
times as large one value of a quantity is than another, 

she can calculate the ratio . If value B is m 

times as large as value A, then by convention we say 
the quantity grew by a factor of m. m is a growth 
factor. 
 
Tuplings: 
(Chance to intro) Student will understand that the 
phrase, “grow by a factor of b” can also be expressed 
as “the quantity b-tuples” or “the quantity 
experienced a b-tupling.” 
 

Discussion 
i. Measuring different cacti with the same 

ruler. 
ii. Measuring the same cactus with different 

cacti as the ruler. Addresses reciprocal 
relationship. 

iii. Provide the student a chance to reflect on 
their actions in (i) and (ii). 

iv. Given ruler-cactus’s height and growth 
factor, determine new cactus’s height. 

v. Given final-cactus’s height and growth 
factor, determine ruler-cactus’s height. 

vi. Problems (i)-(iv) addressed the 
relationships between Cactus B and the 
other cacti. This problem introduces a new 
unit to measure the other cacti with. 

vii. Specific case using division as 
measurement. 

viii. Generalized case using division as 
measurement. 

ix. Addresses two instances of a single 
quantity. Can be used to lead into a 
discussion of the term “growth factor” and 
even “tuplings.” 

x. Addresses two values of a single quantity. 
Can be used to continue a discussion of the 
term “growth factor” and even “tuplings.” 

xi. Generalized case for division as 
measurement and growth factor. 

Quantity A
Quantity B

Quantity A
Quantity B

= m

value B
value A
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Task 
i. 
 
 
 
 
 
 
 
________________________________________________________________________ 
(A) At some point in time,   (B) After some time, Sparky’s  (C) After some more time,  
Sparky the cactus was          height doubled (becomes 2 times as  Sparky’s height then quadrupled  
this tall.                         large). Draw the resulting Sparky. (becomes 4 times as large) from 
                                                                                                      point (B). Draw the resulting  
         Sparky.                                                                                                                                                                                                                                                                                                       
 
ii. By what overall factor did Sparky grow from point (A) to point (C)? 
In other words, overall Sparky’s height experienced a _____-tupling. 
 
iii. If Sparky’s height becomes 3 times as large and then 5 times as large, overall his height will 
experience a ____-tupling. 
 
iv. If Sparky’s height becomes 34 times as large and then 57 times as large, overall his height will 
experience a ____-tupling. 
 
v. If Sparky’s height becomes X times as large and then Y times as large, overall his height will 
experience a____-tupling. 
Learning Goal(s) 
×A × B = ×AB :  
Student will understand that multiplying by A and 
then multiplying by B has the same overall effect as 
multiplying by AB. 
 
Tuplings: 
Student will understand that the phrase, “grow by a 
factor of b” can also be expressed as “the quantity b-
tuples” or “the quantity experienced a b-tupling.” 
 

Discussion 
i. Review tupling language, growth factors. 

Addresses single tuplings. 
ii. Considers overall effect of two successive 

tuplings. 
iii. Considers overall effect of two successive 

tuplings. The student could draw a picture if 
they need it. 

iv. Considers overall effect of two successive 
tuplings that is large enough where the 
student will not want to draw a picture and 
will have to reflect on how she solved the 
first three tasks. 

v. Generalizes the overall effect of two 
successive tuplings. 
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Task (This task requires the use of the attached Geogebra Applet) 
i. Emily purchased the mystical cactus shown in the video (Geogebra Applet) on Sunday, January 1st 

and named the saguaro Sparky. She decided to record the displayed time-lapse video of Sparky’s 
growth and noticed he was growing in a peculiar way. Watch the video and discuss what you 
observe. 

ii. Document and observe Sparky’s height every: week (2 weeks, 1/7 week (day), 1.585 weeks, etc.) 
What changes? What stays consistent?  

iii. If Emily’s friend Morgan visited every Tuesday (every other Tuesday, every day, every third 
Tuesday, etc.) to document Sparky’s growth, would she make the same claims? 

iv. If Emily’s friend Kevin visited every Friday (every other Friday, every day, every third Friday, etc.) 
to document Sparky’s growth, would he make the same claims? 

v. What is the 1-week (2-week, 1/7th-week, 1.585-week, etc.) growth factor? 
vi. What is the 2-tupling (4-tupling, 1.1-tupling, 3-tupling, etc.) period? In other words, how long does it 

take Sparky’s height to become 2 (4, 1.1, 1.585, etc.) times as large? 
Learning Goal(s) 
 
The Exponential Relationship: 
Student will understand that for equal changes in 
Quantity A, Quantity B will grow by a constant 
factor.  
 
Tuplings and Tupling Periods: 
Student will understand that if the n-unit growth 
factor is b, or a quantity b-tuples in n-units, then the 
b-tupling period is n units. 

Discussion 
 
Ellis and colleagues (2012) found that students 
attended just to the growth factors before 
attending to the covarying quantities. 
 
Before answering the questions, students will be 
introduced to the Geogebra applet. During this 
introduction, students are encouraged to reflect 
on the quantities individually and then together 
by adjusting the viewing settings. 
 

Task 
Recall the 1-week growth factor is 2, and thus the 2-tupling period is 1 week.  

i. By what factor does Sparky grow every two (three, six) weeks? Two (Three, Six) weeks is 
equivalent to how many 2-tupling periods? How else might we represent this growth factor so that 
we convey that two (three, six) 2-tupling periods have elapsed?  

ii. By what factor does Sparky grow every 52 weeks (1 year)? 52 weeks is equivalent to how many 2-
tupling periods? How else might we represent this growth factor so that we convey that fifty-two 2-
tupling periods have elapsed? 

iii. By what factor does Sparky grow every day (1/7th of a week)? One day is equivalent to how many 2-
tupling periods? How else might we represent this growth factor so that we convey that 1/7th 2-
tupling periods have elapsed? 

iv. By what factor does Sparky grow every -1 weeks? -1 weeks is equivalent to how many 2-tupling 
periods? How else might we represent this growth factor so that we convey that  
-1 2-tupling periods have elapsed? 

v. By what factor does Sparky grow if no time has elapsed (0 weeks)? Zero weeks is equivalent to how 
many 2-tupling periods? How else might we represent this growth factor so that we convey that zero 
2-tupling periods have elapsed? 

vi. By what factor does Sparky grow by every x weeks? x weeks is equivalent to how many 2-tupling 
periods? How else might we represent this growth factor so that we convey that x 2-tupling periods 
have elapsed? 

vii. Suppose a different cactus’ height 17-tuples every year. By what factor will this cactus grow every 
week? 
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Learning Goal(s) 
Tuplings and Tupling Periods: 
(Chance to review) Student will understand that if the 
n-unit growth factor is b, or a quantity b-tuples in n-
units, then the b-tupling period is n. 
 
Exponent: 
Student will understand that the exponent, x, on a 
number, b, represents the number of b-tupling periods.  
 
Growth Factor Conversions: 
The student will understand that the factor by which a 
quantity will grow over x b-tupling periods is 
represented as bx . 

Discussion 
i. This task encourages the student to think 

of multiple representations for values she 
can easily calculate. 

ii. This task encourages the student to see 
the usefulness for exponential notation 
(not necessarily a need because the 
calculation can still be done as in part 
(i)). 

iii. This task encourages the student to see 
the need for exponential notation (here I 
say need because the value cannot be 
calculated in the same way as the 
previous tasks). 

iv. This task encourages the student to 
develop a meaning for negative 
exponents. 

v. This task encourages the student to 
develop a meaning for an exponent of 0. 

vi. This task is meant to help the student 
develop the understanding that the factor 
by which a quantity will grow over x 2-
tupling periods is represented as 2x . 

vii. This task is meant to encourage the 
student to reflect on her previous work 
and make a growth factor conversion in 
a different context.  

Task 
Recall the 1-week growth factor is 2, and thus the 2-tupling period is 1 week. Also recall that initially 
(week 0) Sparky is 1 foot tall. Suppose that after x weeks, Sparky is y feet tall. 
i. Fill in the blank:  After x weeks, Sparky’s height is ___ times as large as his height at week 0. 

ii. Use the 1-week growth factor to represent this same growth factor. 
iii. Given any number of weeks, x, write an equation that determines the corresponding height of 

Sparky, y. Hint: write an equation relating your answers to (i) and (ii). 
 

iv. Now, suppose initially (week 0) Sparky was 3 feet tall and still doubled in size each week. Write 
an equation that determines y, Sparky’s height in feet, given x, the number of weeks since Sparky’s 
purchase. 
 

v. Suppose a pool is being filled with water so that the volume of water in the pool 1.5-tuples every 
hour. At 9am, there were 15 gallons of water in the pool. Write an equation that determines the 
number of gallons of water in the pool, g, in terms of the number of hours since 9am, h. 
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Learning Goal(s) 
 
The Exponential Function: 
The function f (x) = abx  relates two quantities 
“varying simultaneously such that there is an 
invariant relationship between their values that has 
the property that, in the person’s conception, every 
value of one quantity determines exactly one value 
of the other” (Thompson & Carlson, 2017, pg. 33) 
where x represents the varying values of the first 
quantity, a represents the initial value of the 
second quantity, and b represents the 1-unit (of the 
first quantity) growth factor. 

Discussion 
 

i. This task is meant to guide the student to 
represent the x week growth factor using 
Sparky’s height values and division as 
measurement. 

ii. This task is meant to help the student 
represent the same growth factor using the 
number of weeks and the fact that every 
week Sparky’s height 2-tuples.  

iii. This task is meant to help the student develop 
the equation of the exponential function for 
the Sparky situation. 

iv. This task is meant to evaluate whether or not 
the student has reflected on the previous three 
tasks and present a situation where the initial 
value is not 1. 

v. This task is meant to see if the student can 
apply the reasoning presented in (i)-(iv) in a 
new situation. 

 
Task 
 
i. How many 2-tupling periods (weeks) does it take for Sparky’s height to result in a 2-tupling (4-

tupling, 8-tupling)? 
ii. How many 2-tupling periods (weeks) does it take for Sparky’s height to result in a 3-tupling (5-

tupling, 7-tupling)? 
iii. In general, logb (m)  represents the number of b-tupling periods needed to result in an m-tupling. 

Use this notation to represent your answers to parts (i) and (ii). Verify your answers with the 
applet. 
 

Learning Goal(s) 
 
Logarithmic Notation: 
Student will understand that logb (m)  represents 
the number of b-tupling periods needed to result in 
an m-tupling 

Discussion 
 
i. This task is meant to guide the student to see 

that the number of 2-tupling periods needed 
to result in an m-tupling is something that 
can be measured. 

ii. This task is meant to help the student begin to 
see the need for a way to represent the exact 
value. This task can also be used to analyze 
how the student views the relationships 
between tuplings. 

iii. Introduces the notation and has the student 
practice utilizing the notation. Using the 
applet, the student can see the usefulness of 
the notation. Before verifying answer using 
the applet, the researcher can ask the student 
to anticipate what she will observe when she 
hits enter. This will inform the researcher of 
how the student is viewing the notation. 
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Task 
i. 
 
 
 
 
 
 
______________________________________________________________________________ 
(A) At some point in time,   (B) After 1 week, Sparky’s height           (C) After about 1.585 weeks,  
Sparky the cactus was     doubled (2-tupled, became 2 times          Sparky’s height then tripled (3- 
this tall.                     as large). Draw the resulting Sparky.      tupled, became 3 times as large). 
                  Draw the resulting Sparky. 
 
ii. By what factor did Sparky grow from point (A) to point (C)? How long did it take to grow by this 
factor? 
 
In other words, overall Sparky’s height will experience a _____-tupling in _____ weeks. 
 
iii. If Sparky’s height 3-tuples then 5-tuples, overall his height will experience a _____-tupling. 
 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed to result in a 3-
tupling, the number of 2-tupling periods (weeks) needed to result in a 5-tupling, and the number of 2-
tupling periods (weeks) needed to result in a 15-tupling. Write an equation representing the relationship 
between these three values. 
 
In other words, if it takes _______weeks to 3-tuple and _______weeks to 5-tuple, then it will take 
_______weeks to 15-tuple. 
 
iv. If Sparky’s height 34-tuples then 57-tuples, overall his height will experience a _____-tupling. 
 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed to 34-tuple, the 
number of 2-tupling periods (weeks) needed to 57-tuple, and the number of 2-tupling periods (weeks) 
needed to 1938-tuple. Write an equation representing the relationship between these three values. 
 
In other words, if it takes _______weeks to 34-tuple and _______weeks to 57-tuple, then it will take 
_______weeks to 1938-tuple. 
v. If Sparky’s height X-tuples then Y-tuples, overall his height will experience a _____-tupling. 
 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed to result in a X-
tupling, the number of 2-tupling periods (weeks) needed to result in a Y-tupling, and the number of 2-
tupling periods (weeks) needed to result in a XY-tupling. Write an equation representing the relationship 
between these three values. 
 
In other words, if it takes _______weeks to X-tuple and _______weeks to Y-tuple, then it will take 
_______weeks to XY-tuple. 
 
vi. Now, discuss how your equations would change had you measured in days instead of weeks. 
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Learning Goal(s) 
 
Logarithmic Property #1: 
logb (X) + logb (Y ) = logb (XY )   
The student will understand that the number of b-
tupling periods needed to result in an XY-tupling is 
equal to the number of b-tupling periods needed to 
result in an X-tupling plus the number of b-tupling 
periods needed to result in a Y-tupling 

Discussion 
 
i. Revisiting prerequisite ×A × B = ×AB   

ii. Attending to both covarying quantities. 
This task was designed to help the student 
recognize that multiplying the growth 
factors corresponds with adding the 
corresponding tupling periods. 

iii. Same as (ii), but without requiring the 
student to draw pictures. However, the 
numbers are small enough where if the 
student needs to reason with pictures, he 
can. 

iv. Same as (ii), but the student must reflect on 
previous tasks and the relationships 
because the numbers are large enough 
where the student will not want to draw a 
picture. 

v. Requires the student to generalize. 
vi. The overall relationship will remain the 

same, but the base value will change (how 
we measure the tupling periods). 
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Task 
 
i.  
 
 
 
 
 
______________________________________________________________________________ 
(A) At some point in time,   (B) After some time, Sparky’s        (C) After 1 week, Sparky’s height  
Sparky the cactus was          height 5-tupled in size.               then 2-tupled in size from point  
this tall.                         Draw the resulting Sparky.              (B). Draw the resulting Sparky. 
 
ii. By what factor did Sparky grow from point (A) to point (C)? If it took Sparky approximately 3.3219 
weeks to grow by this factor, how long did it take Sparky to 5-tuple? 
 
iii. If it takes Sparky’s height 3.585 weeks to experience a 12-tupling and 2 weeks to experience a 4-
tupling, how long does it take for Sparky’s height to experience a 3-tupling? 
 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed to result in a 12-
tupling, the number of 2-tupling periods (weeks) needed to result in a 4-tupling, and the number of 2-
tupling periods (weeks) needed to result in a 3-tupling. Write an equation representing the relationship 
between these three values. 
 
In other words, if it takes _______weeks to 12-tuple and _______weeks to 4-tuple, then it will take 
_______weeks to 3-tuple. 
 
iv. Describe how you would determine the 17-tupling period given that the 34-tupling period is 
approximately 5.087 weeks 
v. Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed to result in an 
X-tupling, the number of 2-tupling periods (weeks) needed to result in a Y-tupling, and the number of 2-
tupling periods (weeks) needed to result in an X/Y-tupling. Write an equation representing the 
relationship between these three values. 
 
In other words, if it takes _______weeks to X-tuple and _______weeks to Y-tuple, then it will take 
_______weeks to X/Y-tuple. 
 
vi. Now, discuss how your equations would change had you measured in days instead of weeks. 
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Learning Goal(s) 
 
Logarithmic Property #2: 
logb (X) − logb (Y ) = logb (X /Y )  
The student will understand that the number of b-
tupling periods needed to result in a X/Y-tupling is 
equal to the number of b-tupling periods needed to 
result in a X-tupling minus the number of b-tupling 
periods needed to result in a Y-tupling 

Discussion 
 
i. Revisiting prerequisite ×A × B = ×AB   

ii. Attending to both covarying quantities. 
This task was designed to help the student 
recognize that if the larger tupling period is 
known along with a smaller tupling period, 
the remaining tupling period can be 
determined using subtraction. 

iii. Same as (ii), but without requiring the 
student to draw pictures. However, the 
numbers are small enough where if the 
student needs to reason with pictures, he 
can. 

iv. Same as (ii), but the student must reflect on 
previous tasks and the relationships 
because the numbers are large enough 
where the student will not want to draw a 
picture. The student is also required to 
calculate the ratio to determine the missing 
tupling. 

v. Requires the student to reflect on his 
previous work and make a generalization. 

vi. The overall relationship will remain the 
same, but the base value will change (how 
we measure the tupling periods). 

Task 
Recall that the 2-tupling period is 1 week. 
i. Determine the 24 = 16 -tupling period. What does the 4 as the exponent represent? 

ii. The 16-tupling period is how many times as large as the 2-tupling period?  
iii. Given that the quadrupling or 4-tupling period is 2 weeks, describe how you would determine the 

450 -tupling period. What does the 50 as the exponent represent? 
iv. Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed to result in an 

X-tupling and the number of 2-tupling periods (weeks) needed to result in an Xy -tupling. Write an 
equation representing the relationship between these two values. 

v. Now, discuss how your equations would change had you measured in days instead of weeks. 
Learning Goal(s) 
 
Logarithmic Property #3: 
logb (X

y ) = y logb (X)  
The student will understand that the number of b-
tupling periods needed to result in an Xy -tupling is y 
times as large as the number of b-tupling periods 
needed to result in an X-tupling 

Discussion 
 
i. Review. Recall, the exponent of 4 

represents the number of 2-tupling 
periods that have elapsed. 

ii. Has the student multiplicatively compare 
the two values. The values are small 
enough that the student could draw a 
picture if he needed to. 

iii. Requires that the student reflects on his 
work in (ii) 

iv. Requires the student to make a 
generalization. 

v. The overall relationship will remain the 
same, but the base value will change (how 
we measure the tupling periods). 
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Task 
The 10-tupling period is about 3.3 weeks and the 15-tupling period is about 3.9 weeks. 
 
i. The 15-tupling period is how many times as large as the 10-tupling period? 

ii. Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed to 10-tuple and 
the number of 2-tupling periods (weeks) needed to 15-tuple. Write an equation representing the 
relationship between these two values. 

iii. How would your answer to (i) change if the two periods been measured in days? In years? How 
would your answer to (i) remain the same if the two periods been measured in days? In years? 
Explain. 

iv. Use logarithmic notation to represent the number of 1.104-tupling periods (days) needed to 10-tuple 
and the number of 1.104-tupling periods (days) needed to 15-tuple. Write an equation representing 
the relationship between these two values. 

v. Compare your answers in (ii) and (iv). 
vi. Develop an equation relating logb (X) , logb (Y ) , logc(X) , and logc(Y )  (for b,c,X,Y > 0 ) 
 
Learning Goal(s) 
 
Change of Base Rule (Property 4): 
logb (X)
logb (Y )

= logc(X)
logc(Y )

 

The student will understand that the X-tupling period 

will always be 
logb (X)
logb (Y )

 times as large as the Y-

tupling period, for any value b. 

Discussion 
 

i. Review on division as measurement. 
ii. Representing work in (i) using notation. 

iii. Student must reflect on role of units in 
measuring relative size. As long as the 
units used to measure each quantity are 
the same, the ratio will be constant. 

iv. Builds off reasoning in (iii). 
v. Reflect on relationship between (ii) and 

(iv) 
vi. Requires the student to generalize. 

Task 
 
i. What does y represent in the expression 2y ?  
ii. Represent the number of 2-tupling periods needed to result in a 2y -tupling using logarithmic 
notation. 
iii. Represent the number of 2-tupling periods needed to result in a 2y -tupling without using logarithmic 
notation. 
iv. Write an equation relating your answers in (ii) and (iii). 
v. Simplify logb (b

x )  
 
vi. What does y represent in the expression 2y = x ? 
vii. Represent the number of 2-tupling periods needed to result in an x-tupling using logarithmic 
notation. 
viii. Simplify2log2 (x )  
ix. Simplifyblogb (x )  
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Learning Goal(s) 
 
Logarithmic Property 5:  
logb (b

x ) = x  
The number of b-tupling periods needed to result in an 
b-tupling x times is x. 
 
Logarithmic Property 6:    
blogb (x ) = x   
b-tupling the number of b-tupling periods needed to 
result in an x-tupling is equivalent to an x-tupling. 

Discussion 
 
i. Review meaning for exponents. 
ii. Review logarithmic notation. 
iii. Review meaning for exponents. 
iv. Special case of property 5: log2(2

y ) = y  
v. Generalize from (i-iv). 
vi. Review meaning for exponents. 
vii. Review logarithmic notation. 
viii. Special case of property 6: 2log2 (x ) = x  
xi. Generalize from (vi-viii) 

Task 
 
Recall logb (x)  represents the number of b-tupling periods needed to result in an x-tupling. 

i. Describe how log2(x)  ( log1/2 (x) ) varies as x varies. 
ii. Graph the relationship of log2(x)  ( log1/2 (x) ) with respect to x. If necessary, create a table of 

values. 
iii. T/F: Every value of x determines exactly one value of log2(x) . Explain your answer. 

Learning Goal(s) 
 
The Logarithmic Function: 
The student will understand that as the x-tupling value 
and the number of b-tupling periods needed to result in 
an x-tupling vary simultaneously, “there is an invariant 
relationship between their values that has the property 
that, in the person’s conception, every value of one 
quantity determines exactly one value of the other” 
(Thompson & Carlson, 2017, pg. 33). 

Discussion 
 
i. Addresses covariation 

ii. Function in graphical (and table) 
representation 

iii. Addresses functional relationship (Note: 
usually by this lesson, students have had a 
few weeks with functions, function 
notation, etc.).  
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THREE PAPERS  

In this section, I present the three papers of my dissertation study. I began my 

work with the idea of logarithm by first examining its historical development. I then 

leveraged the insights of this literature review to perform a conceptual analysis for the 

idea of logarithm based on quantitative and covariational reasoning. This conceptual 

analysis informed the hypothetical learning trajectories and task design used in two 

consecutive studies and evolved based on the findings of each study. The first study 

examines two students’ development of concepts foundational to the idea of logarithm. 

This paper discusses two essential understandings that were revealed to be problematic 

and essential for students’ development of productive meanings for exponents, 

logarithms and logarithmic properties. The findings of this study informed my later work 

to support students in understanding logarithms, their properties and logarithmic 

functions. The second study examines two students’ development of the idea of 

logarithm. This paper describes the reasoning abilities two students exhibited as they 

engaged with tasks designed to foster their construction of more productive meanings for 

the idea of logarithm. The findings of this study provide novel insights for supporting 

students in understanding the idea of logarithm meaningfully. Finally, I conclude this 

section with my current conceptual analysis of what is involved in learning and 

understanding the idea of logarithm. The literature review and conceptual analysis 

contributes novel and useful information for curriculum developers, instructors, and other 

researchers studying student learning of this idea. 
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PAPER 1: 

SPARKY THE SAGUARO: TEACHING EXPERIMENTS EXAMINING STUDENTS’ 

DEVELOPMENT OF CONCEPTS FOUNDATIONAL TO THE IDEA OF 

LOGARITHM 

 

ABSTRACT 

There have been a number of studies that have examined students’ difficulties in 

understanding the idea of logarithm and the effectiveness of non-traditional interventions. 

However, few studies have focused on the understandings students develop while 

participating in conceptually oriented exponential and logarithmic lessons. Furthermore, 

little information has been reported about the understandings foundational to the idea of 

logarithm that students need for constructing a robust meaning for logarithm. This study 

explores two undergraduate precalculus students’ understandings of concepts 

foundational to the idea of logarithm as they individually completed an exploratory 

lesson on exponential and logarithmic functions. Over several weeks, the students 

participated in individual teaching experiments that focused on Sparky – a mystical 

saguaro that doubled in height every week. The exponential lesson was centered on 

growth factors and tupling (e.g., doubling, tripling) periods in an effort to support the 

students in developing the understandings necessary to discuss logarithms and 

logarithmic properties meaningfully. This paper discusses two essential understandings 

that were revealed to be problematic and essential for students’ development of 

productive meanings for exponents, logarithms and logarithmic properties. The findings 

of this study may inform future work to support students in understanding logarithms, 
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their properties and logarithmic functions. 

KEYWORDS 

Exponent � Exponential � Logarithm � Logarithmic � Tupling-period � Growth 

Factor 

INTRODUCTION 

Studies have revealed that most students have weak conceptions of the idea of 

logarithm even after experiencing instruction aimed at teaching this idea (Weber, 2002; 

Kenney, 2005). In an effort to support student learning of the idea of logarithm, some 

teachers have tried incorporating the history of logarithms into their lessons (Panagiotou, 

2011), changing the notation (Hammack & Lyons, 1995), and approximating logarithms 

with repeated division (Vos & Espedal, 2016), yet researchers continue to report that 

many students struggle to develop coherent understandings for logarithmic notation, 

properties and the logarithmic function (Kenney, 2005; Strom, 2006; Weber, 2002; Gol 

Tabaghi, 2007). Adding to the problem, standard curriculum provides little support for 

helping students (or teachers) construct a strong meaning for what a logarithm represents. 

A review of 5 precalculus and calculus texts8 revealed that   y = logb(x)  was introduced 

as the inverse to  y = bx , with the properties of logarithms simply stated shortly after. This 

top down approach of beginning with a formal definition of logarithm has not been 

effective. In response, I propose to investigate strategies for helping students develop 

productive meanings for exponents, exponential functions and other concepts 

                                                
8 (1) Spiegler, Adam, "Functions Modeling Change: A Preparation for Calculus" (2011). Faculty Books. 92. 
(2&3) Stewart, J. (2010). Calculus: early transcendentals. Cengage Learning. [2nd and 6th editions] (4) 
Anton, H. Calculus with Analytic Geometry, 1988. (5) Carlson, M., Oehrtman, M., & Moore, K. (2010). 
Precalculus: Pathways to calculus: A problem solving approach. Rational Reasoning. 
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foundational to the idea of logarithm that might support students in understanding 

logarithms and their properties.  

I argue that understanding the idea of logarithm requires more than just 

memorizing and applying Euler’s definition. To understand the idea of logarithm 

meaningfully, one must first conceptualize tuplings9 and their corresponding tupling 

periods in exponential situations. That is, one must attend to the multiplicative growth of 

the output quantity of an exponential function while also attending to the corresponding 

changes in the input quantity of an exponential function. After conceptualizing these 

quantities, one must attend to how they vary together and imagine one tupling period 

relative to another. Therefore, I claim that it is necessary for students to engage in 

quantitative reasoning and covariational reasoning to understand the idea of logarithm 

coherently. It is well documented that students who engage in quantitative reasoning are 

more likely to reason productively while working on conceptually challenging tasks 

(Castillo-Garsow, 2010; Ellis, 2007; Hackenberg, 2010; Moore, 2010; Moore, K. C., & 

Carlson, M. P., 2012; Saldanha & Thompson, 1998; Thompson, 1993, 1994b). 

Furthermore, Thompson and Carlson (2017) have argued that covariational reasoning is 

an essential way of thinking for constructing meaningful function formulas and graphs. 

Therefore, if a goal for students is for them to utilize the idea of logarithm as they work 

through conceptually challenging tasks, then it would follow that they should develop an 

understanding of the idea of logarithm that is based on their conceptualizing and 

representing quantities, while also attending to how the quantities’ values vary in tandem. 

                                                
9 A b-tupling occurs when a quantity becomes b times as large. Therefore, a b-tupling period is the amount 
of change in one quantity (typically time) needed for a second quantity to become b times as large. We say 
that the second quantity has b-tupled over some interval of change of the first quantity. 
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This paper reports on two undergraduate precalculus students’ understandings of 

concepts foundational to the idea of logarithm as they individually worked through an 

exploratory lesson on exponential and logarithmic functions. The findings of this study 

revealed two essential understandings that students must conceptualize in order to hold a 

productive meaning for the idea of logarithm. That is, students must first conceptualize 

that multiplying by A, then multiplying the resulting value by B has the same effect as 

multiplying the initial value by AB, and second that an exponent on a value b represents 

the number of elapsed b-tupling periods.  When discussing the results I illustrate the role 

of these ideas in constructing logarithmic expressions, logarithmic properties, and 

logarithmic functions. I conclude by discussing the importance of conceptualizing these 

two essential understandings in the context of the lesson.    

RESEARCH QUESTION 

The primary question motivating this investigation is: 

- What understandings foundational to the idea of logarithm must students develop 

during an exponential and logarithmic instructional sequence aimed at supporting 

students in acquiring a strong meaning for the idea of logarithm? 

 
LITERATURE REVIEW 

Quantitative Reasoning 

Smith and Thompson (2007) argue that if students are to utilize algebraic notation 

to assist them in representing ideas and reasoning productively, then their ideas and 

reasoning must become sophisticated enough to justify the use of the notation. It thus 

seems reasonable that logarithmic notation and properties should be introduced as a way 
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to represent an idea that students have first conceptualized. If a goal for students is for 

them to utilize the idea of logarithm as they work through conceptually challenging tasks, 

then it would follow that they should develop an understanding of the idea of logarithm 

that is based on their conceptualizing and representing quantities. In this section, I 

elaborate my perspective on what is involved in conceptualizing and reasoning with 

quantities.   

A quantity is a mental construction of a measurable attribute of an object 

(Thompson, 1990, 1993, 1994a, 2011). That is, quantities do not exist out in the world; 

they are created in the mind of an individual when she conceptualizes measuring some 

quality of an object, such as a person’s height or the person’s distance from home as she 

drives to work (Thompson, 2011). One is said to participate in the act of quantification 

when, after conceptualizing a quantity, she conceptualizes the attribute’s unit of measure 

such that the attribute’s measure is proportional to its unit (Thompson, 2011); one’s 

distance from home is some number of times as large as one foot. The numerical 

measurement that a quantity assumes is referred to as a value. When the measurable 

attribute of an object doesn’t change throughout a situation, it is called a constant or fixed 

quantity. On the other hand, if the value of a quantity changes throughout a situation, we 

call it a varying quantity.  

Mathematics is often used to model and describe how two or more quantities 

relate. A quantitative operation occurs in the mind of an individual and is when “one 

conceives a new quantity in relation to one or more already-conceived quantities” 

(Thompson, 2011, pg. 9). When one conceives of three quantities related by means of a 

quantitative operation, he has conceptualized a quantitative relationship. Changing which 
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quantity is determined by the quantitative operation changes the quantitative relationship 

(Thompson, 1990). When one analyzes a situation and assigns his observations (i.e. 

quantities, quantitative relationships) to a network of quantities and quantitative 

relationships, called a quantitative structure, he is said to engage in quantitative reasoning 

(Thompson, 1988, 1990, 1993, 1994a, 2011). 

Research Literature on Students’ Understandings of Exponents and Exponential 
Functions 

A student who conceptualizes exponentiation only as repeated multiplication will 

likely be limited to interpreting natural number exponents. In cases when an exponent is a 

non-natural real number, say −π, the interpretation of exponentiation as repeated 

multiplication is ineffective. While some researchers advocate a repeated multiplication 

approach (e.g. Goldin & Herscovics, 1991; Weber, 2002), others believe this approach 

limits students (e.g. Ellis, Ozgur, Kulow, Williams & Amidon, 2015; Davis, 2009; 

Confrey & Smith, 1995). In particular, Confrey and Smith (1995) argue that the standard 

way of teaching multiplication through repeated addition is inadequate for describing a 

variety of situations such as magnification, multiplicative parts (i.e. finding a fraction of a 

split), reinitializing and creating an array. Weber (2002) proposed that students first 

understand exponentiation as a process (in terms of APOS theory) before viewing 

exponential and logarithmic expressions as the result of applying the process. A student 

with a process conception of exponent will be able to generalize her understanding to 

cases in which the exponent is a non-natural number. Specifically, Weber stressed to his 

students that “ bx  represents the number that is the product of x many factors of b.” With 

this conception, we can describe  92.5  to be the number that is the product of two and a 
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half factors of 9, while under the view of repeated multiplication, a student might write “ 

9 ⋅ 9 ⋅ ? ”. If a coherent understanding of exponential functions (and later logarithmic 

functions) is desired of our students, it is imperative that they have productive meanings 

for exponents. 

 Confrey and Smith (1995) claimed that exponential function learning involves 

mental actions of splitting and covariation. The authors describe splitting as a 

multiplicative operation different from repeated addition that arises in situations 

involving magnification, similarity and sharing, for example. Direction in the splitting 

structure suggests either multiplication or division (doubling vs. halving, etc.). The 

authors provided empirical evidence (students utilize the idea of halving to determine the 

area per child on a playground) that they claim suggests that splitting is an intuitive 

construct for multiplication and division. Confrey and Smith described the covariation 

approach as considering two sets of data and the relationship between the sets. That is, 

this approach encourages the description of how one quantity varies in relation to another 

and allows for the discussion of rates of change, differences, and accumulation. In 

particular, exponential functions can be characterized as having constant multiplicative 

rates of change (Ellis et al., 2015). Confrey and Smith described how to produce 

exponential functions using splitting and covariation and concluded that the use of 

covariation, splitting and the idea of the isomorphism between the additive and 

multiplicative worlds helps avoid concealing the relevant splitting unit/base that relates to 

the functional situation and helps avoid an overreliance on algebraic representation. 

This study’s intervention expanded on Ellis et al.’s (2015) small-scale teaching 
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experiment that examined continuous quantities covarying exponentially. The three 

middle school participants were asked to consider a scenario of a cactus named Jactus 

whose height doubled every week. Eventually, the initial height, weekly growth factor 

and amount of time needed to grow by the provided factor were altered to provide 

variety. The authors noticed three significant shifts in the students’ thinking over the 

course of the study. At first, the students attended only to Jactus’ height and concluded he 

grew by means of repeated multiplication. Eventually, the students began to coordinate 

this repeated multiplication with the corresponding changes in the amount of time that 

elapsed. The second shift consisted of students determining the factor by which Jactus’ 

height grew for varying changes in the number of weeks by means of calculating the ratio 

of two heights. Finally, the third shift involved the students generalizing the reasoning 

noted in the second shift to include non-natural exponents (i.e. to determine the 1-day 

growth factor). The authors noted that a student’s ability to coordinate the growth factor 

(or ratio of height values) with the changes in elapsed time contributed to the student 

successfully defining the relationship between the elapsed time and Jactus’ height. This 

study leveraged findings from Ellis et al.’s study of Jactus the Cactus to promote more 

meaningful discussions on logarithms. 

Research Literature on Students’ Understandings of Logarithms 

There have been a number of studies that have examined students’ difficulties in 

understanding the idea of logarithm (i.e. logarithmic notation, logarithmic properties, the 

logarithmic function) and the effectiveness of non-traditional interventions. However, 

few studies have focused on the understandings students develop while participating in 

conceptually oriented exponential and logarithmic lessons. Furthermore, little 
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information has been reported about the understandings foundational to the idea of 

logarithm students must develop to understand the idea of logarithm well.  

The difficulties students have with developing coherent understandings of the idea 

of logarithm is likely multidimensional. In a typical precalculus course, logarithmic 

functions are the first function family introduced that does not specify a function rule, 

leaving students with no direction on how to determine the value of   logb(m)  given values 

of b and m. Instead, students are expected to either apply their understandings of the idea 

of logarithm, exponents and powers to approximate the value of a logarithm for some 

input value, or, more commonly, use technology to calculate its value. In fact, the 

Common Core State Standards (CCSS) for mathematics have as one of the goals for high 

school students that they are able to write the corresponding logarithmic equation given 

an exponential equation, and calculate the value using technology (only for bases 2, 10 

and e). Logarithmic functions are also the first function family that students encounter in 

which the function name is not a single letter. This may introduce an added complexity 

for students who already struggle in using function notation (Thompson, 2013; Musgrave 

& Thompson, 2014). Additionally, aspects of logarithmic notation have a dual nature to 

them (Kenney, 2005). For example, in   y = logb(x) , b, x, and y may take on a variety of 

meanings to an individual – b often takes on the form of a parameter (staying consistent 

within the context of a problem, but varying from problem to problem), x serves as the 

input variable to the logarithmic function and is a tupling10, and y serves as the output 

                                                
10 Recall: A b-tupling occurs when a quantity becomes b times as large. Therefore, a b-tupling period is the 
amount of change in one quantity (typically time) needed for a second quantity to become b times as large. 
We say that the second quantity has b-tupled over some interval of change of the first quantity. 
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variable to the logarithmic function and is the number of b-tupling periods needed to x-

tuple.  

In addition to these unavoidable complexities, studies have shown that students 

struggle to understand, explain and apply the properties of logarithms (Weber, 2002; 

Kenney, 2005; Gol Tabaghi, 2007). Some students in Kenney’s (2005) study experienced 

difficulties simplifying equations involving at least two logarithmic expressions shortly 

after successfully applying Euler’s definition with single logarithmic expressions. This 

suggests that the standard approach to introduce students to logarithms by giving them 

the statement that   logb(x) = y ↔ by = x  is an insufficient foundation for students trying 

to develop an understanding of the properties of logarithms. Therefore, it seems 

reasonable to consider that if students continue to have difficulties in understanding the 

idea of logarithm (i.e., logarithmic notation, logarithmic properties, the logarithmic 

function), they may still need to develop some understanding(s) foundational to the topic. 

This study was designed to shed light on conceptions that build the foundation for the 

idea of logarithm. An additional goal of this study was to inform curriculum so that 

students can build more coherent understandings of the idea of logarithm. 

CONCEPTUAL ANALYSIS 

In this section, I present the conceptual analysis that guided the design of my 

intervention and goals for student learning of the idea of logarithm. In general, 

conceptual analysis is used to describe the mental operations that might explain why 

people think the way that they do (Glasersfeld, 1995). In this conceptual analysis, I 

convey my understanding of the idea of logarithm. In doing so, I focus on major 
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constructions that need to be made as one develops the idea of logarithm for themselves. 

For example, I defined   logb(m)  to represent the number of b-tupling periods it takes to 

result in an m-tupling. To illustrate the usefulness of this definition, consider a task and 

solution (Figure 1.1). 

 

The starfish population in Hawaii has increased 20% per year since 1990 and is 
modeled by the function   f (t) = 1500(1.2)t , with t representing the number of years since 
1990. Determine how long it will take for the population to reach 3480 starfish. 

  

(1)      f (t) = 1500(1.2)t

(2)    3480 = 1500(1.2)t

(3)   
3480
1500

= (1.2)t

(4)     2.32 = (1.2)t

(5)           t = log1.2(2.32)

(6)           t ≈ 4.6 years

 

Figure 1.1. A Solution to an Exponential Function 

In line (3), we see the ratio 
 

3480
1500

. This calculates the factor by which the initial 

value of the exponential function grows. In particular, in the unspecified amount of time, 

the population of starfish grows by a factor of 2.32, or 2.32-tuples. Therefore, to 

determine precisely how long it takes for the population to 2.32-tuple, we must utilize the 

fact that the population of starfish 1.2-tuples every year, and ask the question, “How 

many years (1.2-tupling periods) does it take to 2.32-tuple?” Using logarithmic notation, 

we can represent this exact value as  log1.2(2.32) . Then, with the use of technology, we 

can determine  log1.2(2.32) ≈ 4.6 , and conclude that after approximately 4.6 1.2-tupling 
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periods, or years, the starfish population will reach 3480 starfish. This definition for 

logarithm relies on the understanding that a designated tupling-period can be used to 

measure a different tupling-period. Of course, in order to discuss these ideas in a 

meaningful manner, the student must also develop a meaning for division as 

measurement, growth factors, tuplings and tupling-periods, and logarithmic notation as 

determining how many base-tupling periods are needed to grow by another factor.  

The meanings I hypothesize to be critical for understanding exponential and 

logarithmic ideas are further clarified in the following Taxonomy (Table 1.1). The table 

provides a more detailed description of the specific ways of thinking and understandings 

that are productive for students to construct in the process of learning about logarithms 

and logarithmic functions. This paper describes two conceptions that assist students in 

developing a number of these desired understandings (by means of more fine grained 

constructions). 

Table 1.1 

Taxonomy of the Idea of Logarithm 

Conceptions related to the idea 
of logarithm Desired understanding 

Division as measurement To measure a value of Quantity A in terms of a 

value of Quantity B, we write 
 

Value of Quantity A
Value of Quantity B

 

. If 
  

Value of Quantity A
Value of Quantity B

= m , we say Quantity A is 

m times as large as Quantity B. 
Growth Factor When coordinating the values of two quantities, if 

the value of the first quantity increases by n-units 
while the next value of the second quantity is m 
times as large as its current value, then the n-unit 
growth factor is m. 
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Exponential growth When relating two continuous quantities, Quantity 
A and Quantity B, if for equal changes in Quantity 
A, Quantity B grows by a constant factor, then the 
two quantities have an exponential relationship.  

Tuples (VERB) If the value of a quantity becomes m times as large, 
we say the quantity’s value m-tuples.  

Tuplings (NOUN) An m-tupling is the event in which the value of a 
quantity becomes m times as large. 

Tupling period An m-tupling period is the amount of change in the 
independent quantity needed for the dependent 
quantity to become m times as large. 

Exponent (on a value, b) The number of elapsed b-tupling periods. Written 
 where x is the number of elapsed b-tupling 

periods. 
Growth Factor Conversion The factor by which a quantity will grow over x,  

b-tupling periods is represented as  bx . If   c1 = bx  , 
then one c-tupling period is the same as x b-tupling 
periods.  

The Exponential Function The function   f (x) = abx  relates two quantities 
“varying simultaneously such that there is an 
invariant relationship between their values that has 
the property that, in the person’s conception, every 
value of one quantity determines exactly one value 
of the other” (Thompson & Carlson, 2017, pg. 33) 
where x represents the varying values of the first 
quantity, a represents the initial value of the second 
quantity, and b represents the 1-unit (of the first 
quantity) growth factor.  

Logarithmic Notation 
  logb( X )  represents the number of b-tupling periods 
it takes (the initial value of an exponential function) 
to result in an X-tupling. 

LP1: 

  logb( X ) + logb(Y ) = logb( XY )   
The number of b-tupling periods needed to result in 
an XY-tupling is the same as the number of b-tupling 
periods needed to result in an X-tupling plus the 
number of b-tupling periods needed to result in a Y-
tupling. 

LP2: 

  logb( X ) − logb(Y ) = logb( X / Y )  
The number of b-tupling periods needed to result in 
an X/Y-tupling is the same as the number of b-
tupling periods needed to result in an X-tupling 
minus the number of b-tupling periods needed to 
result in a Y-tupling. 
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LP3:   logb( X y ) = y logb( X )  The number of b-tupling periods needed to 
experience an Xy-tupling is y times as large as the 
number of b-tupling periods needed to experience 
an X-tupling. 

LP4: 

  
logb( X ) =

logb( X )
logb(b)

=
logc( X )
logc(b)

 

The X-tupling period will always be k times as large 
as the b-tupling period (this value does not depend 
on the unit chosen to measure both the X- and b-
tupling periods).  

LP5:   logb(bx ) = x  The number of b-tupling periods needed to 
experience a b-tupling, x times, is x. 

LP6:   b
logb ( x ) = x  If a value b-tuples   logb(x)  times, the number of b-

tupling periods needed to result in an x-tupling, the 
value will x-tuple. 

The Logarithmic Function A covarying relationship between an x-tupling and 
the number of b-tupling periods needed to 
experience an x-tupling (  logb(x) ). These two 
quantities vary in such a way that every value of the 
x-tupling determines exactly one value of the 
number of b-tupling periods needed to experience 
an x-tupling. 

 

This Taxonomy highlights the reasoning abilities and understandings that are 

included in my hypothetical learning trajectory (HLT) (Simon, 1995; Simon & Tzur, 

2004) for learning the idea of logarithm. My HLTs consisted of a list of learning goals for 

students, tasks intended to promote such learning goals, and hypotheses about student 

learning within the mathematical context. The task associated with each learning goal 

typically progressed through four stages based on my hypotheses of student learning: (1) 

Activity Problem – offers a starting point for students, (2) Optional Activity Problem – 

encourages student to consider relationships between quantities and effects of previous 

actions but can still be verified by engaging with the activity, (3) Non-activity Problem – 

encourages student to reflect on his thinking as he engaged with the previous problems 

while considering relationships between quantities, (4) Abstract Problem – encourages 



 

80 
 

student to generalize through reflection on activity-effect relationships. This progression 

was specifically designed to provide the student opportunities to advance and strengthen 

her thinking while reflecting on the preceding questions. This decision was guided by 

Simon and Tzur’s (2004) emphasis that a student learns (develops new ways of thinking) 

when she reflects on her actions and their effects when completing tasks and was inspired 

by their specific task sequence on equivalent fractions.  

THEORETICAL PERSPECTIVE 

This study investigated the ways of thinking that are needed when learning the 

idea of logarithm. The intention is not to classify how every student will come to learn 

the idea of logarithm, but rather to model the mathematical realities of individual 

students. Doing so will initiate a conversation of epistemic students one might encounter 

while teaching the idea of logarithm. The theoretical perspective used for this study is 

radical constructivism (Glasersfeld, 1995), which proposes that knowledge is constructed 

in the mind of an individual and therefore cannot be directly accessed by anyone else. 

Under this perspective, researchers can, at best, attempt to form a model of students’ 

thinking (Steffe & Thompson 2000a). A model is considered reliable when the student’s 

utterances, written work, and movements are in alignment with the model and does not 

necessarily have to be mathematically correct. That is, if the subject responds in a way 

that is mathematically incorrect, the researcher will be interested in modeling how the 

student was thinking for his claims to make sense to him. When a researcher develops 

such models, she is trying to model the student’s cognitive structures that comprise 

knowledge, known as schemes. These structures are organizations of mental actions or 

mental operations (reversible actions) and may even be complex and contain other 
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schemes (Piaget, 2001). An action is “all movement, all thought, or all emotion – [that] 

responds to a need” (Piaget, 1967, p. 6). Researchers rely on a student’s observable 

actions when attempting to form models of his schemes, such as utterances, written work, 

movements or body language. 

Researchers who are interested in using the teaching experiment methodology to 

model student learning (i.e. cognitive structuring and restructuring) should make sure to 

provide students with opportunities for reflection (Derry, 1996). The goal of my study 

was to model my subjects’ knowledge development of concepts foundational to the idea 

of logarithm as each subject completed lessons in a teaching experiment designed to 

advance her meanings. My data collection and analysis focused on understanding and 

characterizing the meanings the students constructed as they engaged in tasks and 

responded to questions that provided opportunities for reflection.  

METHODOLOGY 

For this study, I conducted two consecutive teaching experiments (Steffe & 

Thompson, 2000a) that focused on advancing and characterizing students’ ways of 

thinking as they completed lessons that were designed to support their understanding of 

concepts foundational to the idea of logarithm. I recruited two precalculus undergraduate 

students, Lexi and Aaliyah (both pseudonyms), to participate in the teaching experiments. 

Lexi participated in four 1.5-hour teaching episodes over the course of a three-week 

period as a substitute for attending class on exponential and logarithmic ideas. Her grade 

in the class at the start of the interviews was a D-. I selected Lexi because she was 

motivated and was verbal, and I was interested in identifying foundational ways of 

thinking that might benefit all students in learning the idea of logarithm. Aaliyah, on the 
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other hand, participated in the teaching experiment after attending her classes on the two 

topics. We met 7 times over the course of a 3.5-week period for approximately 1.5 hours 

each session. Her grade in the class at the start of the interviews was an A.  

Prior to the start of each teaching experiment, I updated my hypothetical learning 

trajectory (Simon, 1995; Simon & Tzur, 2004) for the idea of logarithm. I referred to 

these hypothetical learning trajectories as I developed and upgraded the progression of 

tasks used for each teaching experiment. The instructional sequence designed as the focus 

for this study evolved from the conceptually-based exponential situation designed by 

Ellis et al. (2012, 2015) entitled Jactus the Cactus – which examined a mystical cactus 

whose height doubled in size each week. I also provided the students with tasks unrelated 

to the Sparky situation in order to supplement the instructional sequence and provide 

opportunities for the students to continue to advance their thinking with alternative 

scenarios. All of the tasks used in this study were designed to support the subjects in 

learning the foundational ideas of exponential functions and to promote a contextual 

interpretation of the idea of logarithm before introducing a generalized form. Figure 1.2 

provides an overview of the flow of both teaching experiments. My breakdown of what it 

means to learn the idea of logarithm is centered on the ideas of tuplings and tupling 

periods. These ideas stem from a discussion on growth factors. In exponential lessons, 

however, information about the growth factor is often provided through a discussion on a 

set percent change, or by representing the percent a new output value is of a current 

output value in an exponential function. Therefore, I began the teaching experiments with 

a brief discussion on determining percentages of values and progressed to determine the 

corresponding growth factor given a quantity’s growth expressed as a percent. Due to the 
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adaptive nature of teaching experiments, I do not examine each and every task prepared 

for and/or used in this study in this section (see Appendix for planned tasks). However, 

throughout the presentation of results, I describe tasks that best reveal the student 

learning that the tasks were designed to address.  

 

Figure 1.2. General Flow of the Teaching Experiments 

Throughout the teaching experiment, I often prompted the students to compare 

Sparky’s height at two different instances of time. To accompany the Sparky the Saguaro 

tasks, I designed a Geogebra applet that displayed a dynamic image of Sparky’s height 

and time elapsed since January 1st. The applet was designed to provide a variety of 

viewing options. The students could view Sparky grow as if watching a time-lapse video, 

observe his height above the corresponding elapsed time since his purchase, document 

his height every m weeks, and document his height for any m-week change with the 

additional option of displaying “measuring lines” to help determine Sparky’s current 

height in terms of “how many times as tall Sparky is as compared to his previous height” 

(Figure 1.3). Throughout the teaching experiments I used these displays to explore and 

advance my subject’s understanding of tuplings and tupling periods. 
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Figure 1.3. Different Display Options in Sparky the Saguaro Geogebra Applet 

Following each teaching episode, I conducted a retrospective analysis (Steffe & 

Thompson, 2000a) and analyzed the students’ actions (verbal, written, and motions) 

following an open, axial and selective coding approach (Strauss & Corbin, 1998) in an 

attempt to develop models of student thinking and to inform future sessions. As an 

example, I considered the students’ use and explanation of the Geogebra applet images in 

the context of their solutions to gain insights into their conceptions of the covarying 

quantities in the situation. During this analysis stage, I watched the recordings of each 

interview and made note of shifts in the student’s thinking or moments when the student 

made an essential mistake (Steffe & Thompson, 2000a). In the subsequent episodes I 

tested my hypotheses, modified my claims as needed, and asked questions I thought 

would support my subject in both confronting problematic conceptions and developing 

desirable conceptions and ways of thinking (as described in my conceptual analysis). 

Following the teaching experiments, I revisited every episode again to refine my 
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categorizations. The subjects were not asked to complete assignments between teaching 

episodes. The results describe the thinking that my subjects revealed as they engaged 

with tasks designed to support their learning the idea of logarithm.  

RESULTS 

This section presents results from analyzing video data of Lexi and Aaliyah as 

they independently completed tasks in the exponential lesson.  

Foundational Understanding #1: Multiplying by A, then multiplying the resulting 
value by B, has the same effect as multiplying by AB ( ×A× B = ×AB ) 

This section examines clips from the teaching episodes that suggest both Lexi and 

Aaliyah experienced difficulties in viewing the overall effect of multiplying by A and 

then by B as being the same as multiplying by AB. I also report on the students’ thinking 

as they completed tasks that I designed to support them in constructing a productive 

meaning for multiplicative growth.  

Teaching Experiment #1: Lexi’s Experiences Involving Foundational 

Understanding #1 

Recall that my teaching experiment began by prompting the students to compare 

Sparky’s height at different moments and to describe a new height as a percent of an old 

height. During the first teaching episode I noticed that when Lexi was asked to determine 

n% of a value, she didn’t directly multiply the value by n/100ths, but rather determined 

either 1% or 10% of the reference value and then scaled up the resulting value 

accordingly. For example, during a supplementary task, I asked Lexi to determine 73% of 

$27. Lexi began by dividing $27 by 100 to determine 1% of $27, and then multiplied the 

resulting value by 73 to determine $19.71 was 73% of $27. There was no evidence to 
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suggest that Lexi viewed the resulting value ($19.71) as being 73/100ths (or 0.73) of the 

initial value ($27). Lexi’s dominant meaning for percentages allowed her to answer the 

questions I posed. However, I hypothesized that her strong calculational orientation 

(Thompson, Philipp, Thompson, & Boyd, 1994) and the weaknesses in her meaning for 

percent and what is involved in determining a percent of a number would make it 

difficult for her to determine the corresponding growth factor in the situation. 

 To better understand and advance her meaning for percent during the second 

teaching episode, I presented Lexi with the following two questions: 

1. Suppose the division button on your calculator wasn’t working. How would you 
determine 1% of $45.67? 

2. Suppose the division button on your calculator wasn’t working. How would you 
determine 73% of $45.67? 
 

The purpose of this task was to support Lexi in conceptualizing what it means to 

determine n% of a number. In particular I hoped that she would see that n% of a number 

is n/100ths of the number being referenced. She responded to the first question by stating 

that she could divide $45.67 by 100 to calculate 1% of $45.67. I then reminded her that 

she should assume the division button on the calculator was broken and that she needed 

to come up with a different way to calculate 1% of $45.67. Lexi’s next response was to 

multiply $45.67 by 1/100 by entering 1/100 into the calculator, again making use of the 

division button. I followed by asking her, “What is another way to represent 1/100?” and 

she responded, “0.2? 0.1? 0.01?” – eventually settling on 0.01. Lexi’s statement suggests 

that she was uncertain about using 0.01 to represent 1/100th. When attempting the second 

question of the task that prompted her to determine a larger percentage of $45.67, Lexi 

stated, “Don’t we just do the same thing?” She followed by saying that she could 



 

87 
 

determine 73% of $45.67 by multiplying $45.67 by 0.73. Lexi’s attention to the results of 

her actions for the first problem suggests that she did not consider what the 0.73 

represented in the situation. I then asked Lexi how she might calculate the same value by 

using her answer in part (1). She explained that she would just have to multiply the 1% 

value by 73 to calculate 73% of $45.67. I attempted to draw Lexi’s attention to the 

actions she performed in hopes that she would see that multiplying by 0.73 has the same 

effect as multiplying by 0.01 and then by 73. That is, multiplying a value by 0.73 

produces 73 1/100ths of that value. Instead, Lexi claimed that one method (the first) uses 

the 1% and the other (multiplying by 0.73) doesn’t “necessarily need the 1% to find (the 

output).” Lexi’s description of the two methods suggests that she did not view these two 

approaches as equivalent. In other words, Lexi’s actions suggest she viewed multiplying 

by 0.01 and then by 73 as being quantitatively different than multiplying by 0.73. 

During the remaining time in the second teaching episode, Lexi worked on a task 

that prompted her to determine different growth factors to represent Sparky the Saguaro’s 

growth11 over different periods of elapsed time. In an attempt to determine the 3-week 

growth factor, Lexi began by noting Sparky’s initial height of one foot at week zero and 

then claimed, “three time(s)– no, every week it’s doubling, or times two for the height. 

So to get to week three, you’d say it’s like, you wouldn’t say 6 times as large – that 

wouldn’t make sense. I feel like you would say 3 times as large – that doesn’t make sense 

either.” This response suggests that Lexi first considered multiplying the 1-week growth 

factor (2) by the number of elapsed weeks (3) to calculate the 3-week growth factor. 

However, she quickly ruled out that option and looked to other values appearing in the 

                                                
11 Recall Sparky the Saguaro is the mystical cactus whose height doubles in size each week. 
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situation. Lexi then appeared to observe the height of the cactus three weeks after its 

purchase and eventually concluded that at the end of week 3 Sparky would be 8 times as 

large as the initial Sparky. However, there was no evidence to suggest that Lexi had 

contemplated the relationship between the 1-week growth factor (2) and the number of 

weeks elapsed (3), as a means to obtain the 3-week growth factor (8). In particular, 

although Lexi noted that Sparky was doubling in height every week, her responses and 

attention to the heights of the cacti suggest that she had not yet conceptualized that if 

Sparky doubles in height three weeks in a row, that will have the same effect as growing 

by a factor of 23, or 8.  

During the third lesson, Lexi and I discussed the biconditional nature between 

statements involving growth factors and tupling periods. For example, I conveyed that we 

say the n-unit growth factor is b if and only if the b-tupling period is n-units. In the 

Sparky context, since the 1-week growth factor is 2, the 2-tupling (or doubling) period is 

1 week. Lexi correctly determined the 2- and 4-tupling periods while observing Sparky’s 

growth each week. However, she struggled to explain n-tupling periods when n was not a 

power of 2. For example, when I asked Lexi to approximate the 3-tupling (or tripling) 

period, she claimed that it would be 1.5 weeks (so that the three foot Sparky would lie 

halfway between the 2 foot and 4 foot Sparky). Under the assumption that Sparky was 

three feet tall after 1.5 weeks, I asked Lexi to determine the number of weeks it would 

take Sparky to 9-tuple (or to determine the total amount of elapsed time if Sparky 3-

tupled in height again). Lexi’s first response did not build off her answer to the 3-tupling 

period. Instead, Lexi treated the task as a new problem and claimed the 9-tupling period 

would be 3.5 weeks and then modified her response to be 3.25 weeks (so that the 9 foot 
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tall Sparky would lie closer to the 8 foot tall Sparky). Lexi’s response suggests she did 

not use the understanding that if Sparky’s height 3-tupled (or tripled) two times in a row, 

his resulting height would be 9 times as large as his initial height. Furthermore, the 9-

tupling period would be (1.5x2) 3 weeks (based on her first response). However, this is 

impossible because Sparky becomes 8 times as large during a 3-week period. After I 

explained why this was an incorrect amount of time, Lexi stated that the 3-tupling period 

would have to be less than 1.5 weeks. Again, if this was the case, the 9 foot tall Sparky 

would appear before the 8 foot tall Sparky – a contradiction! Lexi’s second incorrect 

response suggests that she had still not distinguished the relationship between the 3-

tupling and the 9-tupling periods (specifically that 3-tupling twice is equivalent to 9-

tupling once). For the remaining portion of the teaching session, Lexi continued to 

struggle with the idea that if Sparky’s height first m-tupled and then n-tupled, we could 

describe his total growth as growing by a factor of mn.  

During the retrospective analysis of the third teaching episode, I hypothesized that 

Lexi’s difficulties with the aforementioned ideas were due to her not understanding that 

A-tupling then B-tupling had the same overall effect as AB-tupling. As a result I designed 

a task (Figure 1.4) aimed at supporting her in conceptualizing this foundational 

understanding. I anticipated that if Lexi engaged with this task she would begin to 

develop this foundational way of thinking. 
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________________________________________________________________________ 

(A) At some point in time, (B) After some time, Sparky (C) After some more time,  
Sparky was this tall.  2-tupled in height. Draw  Sparky then 4-tupled in height.  
    the resulting Sparky.  Draw the resulting Sparky. 
Figure 1.4. Task to Address Foundational Understanding #1 

Lexi drew Sparky (B) with ease. Using a straightedge, she marked Sparky (A)’s 

height and drew a new Sparky that was 2 times as tall as the first. However, Lexi was 

unable to construct Sparky (C)’s height accurately. At first, she drew a cactus that was 2 

times as tall as Sparky (B). It appeared as though Lexi interpreted the tupling language to 

mean doubling. After I clarified that Sparky (C) should be 4 times as tall as Sparky (B), 

Lexi drew the correct Sparky (C) by using her straightedge, documenting Sparky (B)’s 

height and constructing a length that is 4 times as tall as Sparky (B)’s height. Afterwards, 

Lexi and I had the following discussion: 

Emily:  Sparky (C) is how many times as large as Sparky (A)? 
Lexi:  Um, wouldn’t it be like 6 times as large? 
Emily:  OK, can you verify that? 
Lexi:  Sure (reaching for straightedge) 
Emily:  And as you are marking that off, can you explain how you concluded it 

should be 6? 
Lexi:  Um, well I figured that it would be 6 times as tall because right here this is 

two times so then that 2 plus that 4 would be 6. (Uses the straightedge to 
measure how many Sparky (A)’s fit into Sparky (C)) Oh so maybe I was 
wrong. OK, wait, so it’s 8 because is it because it’s 4 times 2? Would you 
multiply those instead of adding them? 

Emily:  Mhmm 
Lexi:  OK 
Emily:  But can you, can you think about, um, instead of just saying “We’re going 

to multiply instead of add,” can you think about why it is multiplication? 



 

91 
 

Lexi:  Um, I guess that would make sense because right here, if you’re like 
doubling it in height, you’re multiplying it by two. And then if you’re 4-
tupling it I guess you are going to increase it by like another factor of 4. 
So instead of adding the factors you would need to multiply them. 

 
Following this first activity, Lexi correctly completed and interpreted two similar 

tasks – one where Sparky tripled and then doubled in height, and another where Sparky 

tripled twice in a row. During the remaining time in this teaching episode, Lexi 

consistently applied similar reasoning, with one exception. In this instance she failed to 

make sense of the quantities in the situation and expressed that she felt lost in the 

numbers. However, as soon as I helped her refocus her attention on the relevant 

quantities, she began to reason in a productive manner. In the Discussion section of this 

paper I elaborate how the development of this understanding was essential for Lexi as she 

attempted questions involving the first logarithmic property. In particular, I discuss the 

importance of first conceptualizing the relationship between the tuplings (i.e., 

Foundational Understanding #1) before discussing the relationship between their 

corresponding tupling periods (i.e., the first logarithmic property). 

Teaching Experiment #2: Aaliyah’s Experiences Involving Foundational 

Understanding #1 

During her exploratory interview, I presented Aaliyah with a variety of tasks 

aimed at revealing her conceptions and ways of thinking before beginning the teaching 

sessions. Two of the tasks (Figure 1.5) focused on the understanding that multiplying a 

value by A, and then multiplying the resulting value by B has the same effect as 

multiplying the starting value by AB. Both tasks examine the height of a cactus 

experiencing two multiplicative growth spurts. However, the first task provides an initial 
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height and the second task does not. 

1. Suppose you purchased a saguaro cactus that was 2.5 feet tall. If the measure of a 
saguaro cactus’s height doubles (grows by a factor of 2) and then immediately triples 
(grows by a factor of 3), by what overall factor did the cactus grow? 
A. 5 
B. 6 
C. 12.5 
D. 15 
E. The answer would vary based on the units chosen to measure initial height of the 
cactus (e.g. inches, feet, meters, etc.). 
 
2. If the measure of a saguaro cactus’s height quadruples (grows by a factor of 4) and 
then immediately triples (grows by a factor of 3), by what overall factor did the cactus 
grow? 
A. 3.5 
B. 7 
C. 12 
D. There is not enough information – you need to know the initial height of the cactus. 
E. The answer would vary based on the units chosen to measure initial height of the 
cactus (e.g. inches, feet, meters, etc.). 
Figure 1.5. Two Tasks Examining the First Foundational Understanding 

Initially, Aaliyah approached the first task by multiplying the initial height by 2, 

and then she took the resulting value, 5, and multiplied it by 3 to arrive at 15. I asked if 

this was what we were trying to find and she replied, “Yes.” I then asked if there was a 

difference between, “by what overall factor did the cactus grow” and “how tall is the 

resulting cactus” and she said the two phrases mean the same thing to her. I decided to 

discuss Aaliyah’s thinking regarding the second question before trying to advance her 

thinking on the overall idea. For the second task, Aaliyah claimed that there was not 

enough information to answer the question because the initial value was not provided. To 

challenge her thinking, I drew an initial cactus with no specified height and asked if we 

could identify the height of the cactus after it quadruples in size. The following dialogue 

is what ensued. 

Aaliyah:  It’s possible but you wouldn’t have a number estimate of what it would 
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be. 
Emily:  OK, but even if we don’t know the number, there would still be a height 

right? 
Aaliyah:  Mhm. 
Emily:  Could you go ahead and um at least identify…how tall the resulting 

cactus would be after it quadruples in height? 
Aaliyah:  Draws a tick mark at the top of the initial cactus’ height and measures 

the cactus’ height using two fingers. She keeps her fingers spaced that 
far apart and marks off four total tick marks spaced apart by that length 
creating an invisible segment that is four times as large as the initial 
cactus.  

Emily:  So this is like the resulting spot right here? 
Aaliyah:  Yeah 
Emily:  Can you describe what you were doing with your fingers as you were 

trying to measure that out? 
Aaliyah:  Um, basically I took the initial height and then I doubled it and made a 

mark and then I tripled it and made a mark and so forth. 
Emily:  Ok, so you have four copies of the initial cactus? 
Aaliyah:  Yes. 
 

This except reveals that Aaliyah was able to represent the height of a new cactus in terms 

of a cactus with an arbitrary height. I then asked Aaliyah to determine the height of the 

resulting cactus if the cactus she just finished drawing tripled in height. Aaliyah then 

went through the same process as she had before and drew tick marks that were equally 

spaced according to the height of the quadrupled cactus – ending with a cactus that was 

three times as tall as the quadrupled cactus’ height. With each stage of the cactus’ growth 

documented, I then asked Aaliyah, “So, what if I asked you, ‘How many times as large is 

this final cactus…compared to the starting cactus?’ Would you be able to answer that 

question?” The following conversation ensued. 

Aaliyah:  Sort of, kind of. I feel like if we’re comparing the big one to the small 
one it would be…for this one three times as large (pointing to the middle 
stage). 

Emily:  And how did you get three? 
Aaliyah:  Because I remember from the initial question that you asked me to make 

it three times as large, so it’s basically taking…um…the biggest size and 
you kinda divide it by the smaller portion to get an answer.  

Emily:  What about this cactus (points to middle), how many times as large is 
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this cactus compared to the initial one? 
Aaliyah:  Four times as large. 
Emily:  And, so um, if the biggest cactus is three times as large as the middle 

one, and the middle one is four times as large as the smallest one, um, 
did you say that we could determine that the biggest cactus is some 
number times as large as the smallest one? 

Aaliyah:  It’s possible, yeah. 
Emily:  And are you saying that it’s possible only if we know the numbers, for 

the like how many feet tall they are? 
Aaliyah:  Not necessarily because if you wanted to you could take this cactus 

(middle) and this one (largest) and you can divide it by fours within each 
section (each third) 

Emily:  And if you did that, how many would you get? 
Aaliyah:  That would be 12 times as large. 
Emily:  Ok, so this final cactus…should be 12 times as large as this (initial) 

cactus? 
Aaliyah:  Mhm. 
 

This excerpt supports that my intervention was successful in supporting Aaliyah to 

conceptualize the effects of growing by a factor of four and then three. However this 

exchange does not reveal Aaliyah’s conception of how the measure of the initial height of 

the cactus affects the cactus’ growth. I concluded our discussion of this task by asking 

Aaliyah if her answer would change if the initial height was different. She replied, 

“Possibly, I feel like it probably would be. But then again it might not. See here’s why I 

think yes and no: I say no because even if you did have an initial height for the small 

cactus, you’re still times, you know still going by times 12. So, it’s technically the same 

thing but with numbers. And then….I think that was my yes reason. And the other reason 

was because maybe…what if for the smaller cactus, um, no I’m going to stick with the 

first theory.” Therefore, Aaliyah concluded that the initial height of the cactus would not 

affect her answer, suggesting that she had conceptualized the final height of the cactus in 

terms of an arbitrary initial height – in particular, that given any height for the initial 

value of the cactus, the final cactus’ height would be 12 times as large.  
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Despite the success of the previous intervention, I was unsure if Aaliyah had 

considered how the three factors (3, 4, and 12) in the second task were related. I 

suggested we revisit the first task to see if her thinking had changed. After looking over 

the problem again, Aaliyah decided she wanted to change her answer: 

Aaliyah:  So it’s growing by a factor of 2 and then 3 so if I wanted to add the two 
together it’s basically growing by 5. So if they just wanted the factor, 
then it would be A. 

Emily:  And is that consistent with how you thought about number [two] with 
this drawing out stuff? 

Aaliyah:  Right, now that I’m looking at it visually, and then reading it, it matches 
up better. 

Emily:  So how is that reasoning, now that you’ve had that little aha moment, 
how is that similar to the stuff that we talked about in number [two]? 

Aaliyah:  Because with number [two], that’s basically saying you quadrupled it 
and then from there you tripled it. So if you wanted to take the 2.5 and 
double it, which was 5, and then triple it, which was 15, is basically the 
same thing. So, if you wanted to know how much it grew, that’s saying, 
“Oh it grew by this, like times this many from the initial height.” So 
that’s how I came up with five. Because you doubled it and then you 
ended up tripling it and then I kinda added the two together rather than 
timesing it because if you times two by three then it would be six and 
then that’s a completely different answer. So I felt like adding two and 
three together sounded more logical. 

Emily:  Ok, can you explain why it sounded more logical? 
Aaliyah:  Because (reaches for calculator) so say if I did 2.5 times 6…(sees 

calculation results in 15)…hmm…and then 2.5 times 5…OOHHH…it’s 
6! Wait, wait, wait wait. I’m sorry I keep changing my answer! 

 
After some vacillation, Aaliyah concluded that the final cactus would be six times 

as tall as the initial cactus if the initial cactus’ height doubled and then tripled in size. She 

also verified her answer by drawing a picture that illustrated her reasoning. To challenge 

her thinking further I asked, “So what if I had a cactus that doubled in height, then tripled 

in height, then quadrupled in height?” Aaliyah replied, “That would be 2 times 3 which is 

6 times 4 which would be 24,” and concluded, “That would be 24 times the initial 

height…24 would be the growth factor from the initial height because we don’t know 



 

96 
 

what it is.” Aaliyah’s response and attention to her actions suggests that she had 

conceptualized determining the overall growth factor as multiplying the individual factors 

together. However, later in the teaching experiment we revisited this foundational 

understanding and Aaliyah provided stronger reasoning to justify her actions. In our 

discussion I asked Aaliyah what the overall growth factor would be if a cactus’ height 3-

tupled (tripled) and then from that point 5-tupled in size. Aaliyah responded, “I want to 

say 15, take 3 times 5, no, mm, wait. If he becomes three times as large – whatever height 

that may be, and then you take that 3 times as large and you make it into five of them, it’s 

15, no, it’s three times as large, so it’s three within each five, it’s fifteen.” Aaliyah’s 

attention to each of her actions between the initial and resulting stages of the task 

suggests that she conceptualized the roles of the individual and overall factors in the 

situation and the relationship between them (either during the interview or some time 

between the exploratory interview and that teaching session). 

Lexi and Aaliyah were not alone in their difficulties with this foundational 

understanding. When I recruited subjects for the second teaching experiment, I gave the 

previously mentioned tasks (Figure 3) to 124 students. Only 39.5% answered the first 

question correctly and 52.4% answered the second question correctly. This data provides 

evidence that the foundational understanding of multiplying by A, then multiplying the 

resulting value by B has the same effect as multiplying by AB needs to be addressed prior 

to introducing lessons on exponential and logarithmic growth. 

Foundational Understanding #2: The exponent on a growth factor, b, represents the 
number of elapsed b-tupling periods  

Teaching Experiment #2: Lexi’s Experiences Involving Foundational 
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Understanding #2 

In this section, I present and discuss clips from the teaching episodes that suggest 

Lexi did not view the exponent on a growth factor, b, as representing the number of 

elapsed b-tupling periods. This understanding, or lack thereof, was less prevalent 

throughout the teaching experiment, particularly because I readjusted the third and fourth 

episode dialogue to focus more on discussing the quantities (i.e. growth factors, tupling-

periods) instead of representing them using exponential notation. It is unclear as to 

whether or not Lexi had constructed the desired understandings during the course of the 

teaching experiment. I conclude this section by discussing how the intervention may have 

impacted Lexi’s thinking. 

Although Lexi had claimed during the first interview that any one-week change in 

the number of weeks would result in Sparky growing by a factor of 2, she did not appear 

to understand that this 1-week growth factor could be used to represent cases where a 

doubling in height occurred more than once (i.e., using exponents). For example, as Lexi 

examined Table 1.2, which she constructed during the first interview, she noted that it 

was easier to observe that Sparky’s height was doubling each week by attending to the 

values in the Decimal Notation column and made no claims about how the doubling was 

represented in the Exponential Notation column. 

Table 1.2 

Differentiating Between Product, Exponential, and Decimal Notation 

 Product Notation Exponential Notation Decimal Notation 
Height at purchase 1 1 1 
Height after 1 week 1(2) 1(2)1 2 
Height after 2 weeks 1(2)(2) 1(2)2 4 
Height after 3 weeks 1(2)(2)(2) 1(2)3 8 
Height after 4 weeks 1(2)(2)(2)(2) 1(2)4 16 
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As a result, I decided to reintroduce the idea that the exponents on the 2’s 

represent the number of doubling periods (weeks) that have elapsed since Sparky’s 

purchase. However, despite our brief discussion, Lexi did not appear to understand that 

the exponent on a value, b, represents the number of b-tupling periods. This was apparent 

as Lexi tried to determine the 1-day, 4-day and 8-day growth factors. 

Lexi’s initial attempt to determine the 1-day growth factor involved her dividing 

the 1-week growth factor (2) by the number of days in a week – arriving at 2/7. However, 

when Lexi calculated 2/7ths in her calculator and observed a value less than 1, she 

claimed her method would not work because multiplying by 2/7 will “make the value 

smaller.” Had Lexi conceptualized that the exponent on 2 represented the number of 

doubling periods, or weeks, that have elapsed and that the entire expression represented 

the growth factor for that specified period of time, I hypothesize that she would have 

been able to conclude that 21/7 was the 1-day growth factor because one day is 1/7th of a 

2-tupling period. Although Lexi was confident that a 7 must be involved in calculating 

the 1-day growth factor using the 1-week growth factor, she did not know how to 

proceed. Trying a different method, I used the applet to calculate the 1-day growth factor 

and asked Lexi to define a function to determine Sparky’s height in feet in terms of the 

number of days since his purchase. I then asked Lexi to compare the two function 

definitions (one in terms of weeks and the other in terms of days since Sparky’s 

purchase) taking into account the relationship between weeks and days (d=7w). 

Unfortunately, our conversation did not appear to have any lasting effect on Lexi’s 

thinking. For example, when Lexi was asked to determine the 4-day growth factor, she 

said, “So wouldn’t we have to just do the same thing, but with a 4 in it?” To represent her 
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answer, she wrote the 1-day growth factor (approximately 1.1) obtained from the applet 

with an exponent of 4. Lexi’s attention to the results of her actions suggests that she 

viewed finding a new growth factor as a process of plugging in the value representing the 

designated amount of time as the exponent to the appropriate known growth factor. 

Similarly, she referred to the expression 21/7 from our previous discussion when asked to 

express the 4-day growth factor in terms of the 1-week growth factor, and wrote 24/7. It 

was unclear as to whether or not Lexi viewed 21/7 or 24/7 as being equivalent to the 1-day 

and 4-day growth factors respectively. It appeared that Lexi viewed the numerator of the 

fraction in the exponent of 2 as representing a number of days and simply replaced the 1 

with a 4 instead of reasoning that a 4-day period is 4/7ths of a 1-week period. 

Finally, I asked Lexi to determine the 8-day growth factor given the 4-day growth 

factor. Lexi referred to her previous answer of 1.14 and replaced the 4 with an 8, claiming 

that the 8-day growth factor was 1.18. I then reposed the question and said, “If I said, 

‘1.485 is the 4-day growth factor’ how would you find the 8-day growth factor?” Lexi 

immediately responded that she would multiply the value by two. Had Lexi 

conceptualized that the exponent on a value, b, represents the number of b-tupling 

periods, she should have been able to conclude that the 8-day growth factor is  

because there are two four-day periods that make up an eight-day period. Lexi 

experienced similar difficulties at the beginning of our third lesson. 

In the final teaching episode, exponential notation was not used until we began 

discussing the major ideas behind the third logarithmic property (  logb( X y ) = y logb( X ) ). 

The following dialogue demonstrates Lexi’s struggle in viewing the exponent on a 
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growth factor, 4, as representing the number of 4-tupling periods that have elapsed. 

Emily:  Given that the quadrupling or 4-tupling period is 2 weeks, describe how 
you would determine the 4 to the 50th -tupling period. Whatever that is. It 
is pretty big – I don’t want to punch it into my calculator. 

Lexi:  This comes out to be two weeks – this beginning part – doesn’t it? Um. I 
don’t know what to do with the 50. 

Emily:  Ok. What does this exponent on the 4 represent? 
Lexi:  The number of tupling periods it takes to get there. 
Emily:  So the number of 4-tupling periods that have passed. How long is a 4-

tupling period? 
Lexi:  I don’t even know. I’m like, I don’t remember. 
Emily:  So read the statement again. 
Lexi:  Oh, it’s two weeks. 
Emily:  So a 4-tupling period is 2 weeks and the exponent on 4 represents the 

number of 4-tupling periods have passed. So how long is the 4 to the 50th -
tupling period? How can we calculate that? 

Lexi:  I don’t know what you do with the 50. I understand what it is, I don’t 
know what to do with it though to get this extra value that it’s giving us. 

 
At first, it appears as though Lexi viewed the exponent, 50, as representing the 

number of 4-tupling periods it takes to grow by a factor of 450. However, she was unable 

to immediately conclude that if there are 50 4-tupling periods and each 4-tupling period is 

2 weeks long, then 100 weeks have elapsed. This suggests she did not conceptualize the 

multiplicative relationship between the number of elapsed 4-tupling periods and the 

number of weeks in a 4-tupling period. In an effort to help her conceptualize that the -

tupling period will be 2n weeks, I presented Lexi with related examples where the 

exponent was a smaller number (e.g. 2, 5, 10). After working through a few of these 

smaller-exponent examples, Lexi arrived at the correct answer, but seemed to get there by 

attending to the results of her previous actions rather than conceptualizing what the 

exponent represented and conveyed in the situation. This data suggests that her difficulty 

was with her understanding of the meaning of the exponent, and possibly with the tupling 
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language. Either way, this dialogue suggests Lexi began to view the value of an exponent 

as representing a number of tuplings throughout the course of the instructional sequence 

on tupling periods. 

Teaching Experiment #2: Aaliyah’s Experiences Involving Foundational 

Understanding #2 

During her exploratory interview, I presented Aaliyah with a task (Figure 1.6) that 

focused on the understanding that the exponent on a value, b, represents the number of 

elapsed b-tupling periods. Initially, Aaliyah chose answer choice A stating, “it made me 

think of the equation, I don’t remember what it’s called, but when they give you how 

many times it triples, per hour with your initial number, it’s written out a times b to the 

whatever power it may be. Oh, and usually when it’s to the power, it typically conveys 

time.” Aaliyah’s conception that the exponent represented time worked for her when the 

base-tupling period12 was 1-hour, 1-minute, or 1-second, etc. However, as in the case of 

this task, Aaliyah experienced difficulties interpreting the meaning of exponents when the 

provided base-tupling period was not a typical unit of measure (e.g. 2-hours, 6 minutes, 

etc.). 

On Saturday morning, Mary made a batch of bread dough and set the dough in a warm 
place to rise. Suppose the volume of the dough triples every 2 hours and suppose the 
starting volume of the dough was 45 cm3. Which of the following statements best 
describes what information the 5.5 conveys in the expression:  45(3)5.5 ? 
 A. 5.5 hours have elapsed 
 B. 5.5 two-hour (tripling) periods have elapsed 
 C. 3 gets multiplied by itself 5.5 times 
 D. This expression doesn’t make sense – you can’t multiply a number by itself 5.5 times. 
 E. None of the above 
Figure 1.6. Task Examining the Second Foundational Understanding 

                                                
12 Recall an m-tupling period is the amount of change in the independent quantity needed for the dependent 
quantity to become m times as large. 
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Throughout the teaching sessions that followed, Aaliyah demonstrated consistent 

thinking when it came to determining a specific growth factor provided an amount of 

time. For example, when asked to determine the 6-hour growth factor for the previous 

task, Aaliyah would take the number of elapsed hours, divide by the number of hours it 

took to triple, and use the resulting fraction as the exponent to 3. In general, if the b-

tupling period was n units, and m units elapsed, Aaliyah would claim that the m-unit 

growth factor was  b
m

n . Although her approach determines the correct answer, Aaliyah 

experienced difficulty when asked to describe what the value of the exponent 

represented. Instead of attending to the entire value of the exponent, she would often 

focus just on the numerator of her fraction in the exponent and claim that that many units 

elapsed. This technique proved troublesome when the exponent was simplified or written 

as a fraction where the value of the denominator was not the same as the number of units 

needed for the output quantity’s value to base-tuple. 

During the fourth teaching episode, I asked Aaliyah to determine different growth 

factors for the following situation: On Saturday morning, Mary made a batch of bread 

dough and set the dough in a warm place to rise. Initially, at 9am, the dough’s volume 

was 45cm3. Suppose the volume of the dough 3-tuples (triples) every 2 hours. Aaliyah 

employed her fractional approach to determine the 1-hour, 2-hour, 25-hour, ½-hour and 

H-hour growth factors. However, when I asked her to interpret the simplified value of the 

exponent she determined for the ½-hour growth factor, she quickly resorted to discussing 

the values of her original fractional exponent as seen in the following dialogue: 

Emily:  What about if we wanted to find the ½ hour growth factor, or we could 
say 30 minutes. 

Aaliyah:  Then you could do three to the power 30 over 120 if you wanted to make 
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the two hours into minutes.  
Emily:  Ok, so you’re, are you saying like 30 over 120 is the 30 minutes that 

we’re talking about over the 120 minutes in two hours? 
Aaliyah:  Yes.  
Emily:  That’s how you’re getting that fraction? 
Aaliyah:  Mhm 
Emily:  OK. Um, so 30 divided by 120 simplifies to a fourth, or .25. What does 

that .25, or a fourth represent in that context then? 
Aaliyah:  The growth factor for a 30-minute time change 
Emily:  So this, this .25 is the growth factor? 
Aaliyah:  Yes. For the 30 minutes, well no because you don’t have the three. So 

the .25 is another way of saying um, is basically representing the 30 
minutes. But, yeah, representing 30 minutes within two hours by itself, 
without the growth factor.  
 

Later in that same interview we revisited this part of the task and Aaliyah stated, 

“I would take the three to the power of .25 divided by two to give me that many times the 

three can 3-tuple.” Her suggestion that we rewrite the growth factor as  was an 

(incorrect) attempt to make the denominator of the exponent be the number of hours it 

took for the dough’s volume to 3-tuple (triple). She made a similar attempt in the fifth 

teaching episode when trying to interpret the growth factor  43/4  in the Sparky situation. 

Aaliyah rewrote the growth factor to be  40.75/2  stating, “I wrote the divided by two 

because it 4-tuples every 2 weeks and … and then with three fourths after I turned it into 

a decimal, I was basing the decimal after how many times will it 4-tuple in 2 weeks…but, 

since that’s not the case, … it’s probably just .75 by itself. But then you don’t know, well 

I don’t know if um…if it’s the final answer for how many times it can 4-tuple or 

something else.” We discussed why the rewritten growth factor was not equivalent to the 

original problem and concluded that instead we could have written  41.5/2 . I then asked 

Aaliyah to interpret the growth factor and she said, “It basically means since, so because 

um, the cactus 4-tuples every two weeks, we want to figure out how many times it’ll 4-
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tuple within a 1.5 week period.” Aaliyah concluded that in 1.5 weeks, the cactus would 4-

tuple .75 times. 

Aaliyah’s difficulties with interpreting the value of an exponent suggest she 

struggled to conceive the number of elapsed base-tupling periods as a new quantity. 

Therefore when the quantitative relationship changed (i.e., when she was provided with 

the value of an exponent and asked to find which growth factor was being represented), 

Aaliyah was forced to make changes to her thinking in order to make sense of the values 

presented. Both Lexi and Aaliyah were not alone in their difficulties with this 

foundational understanding. In fact, as I recruited for the second teaching experiment, I 

gave the previously mentioned task (Figure 1.6) to the same 124 students. Only 43.5% 

answered the question correctly. This evidence suggests that the foundational 

understanding that the exponent on a growth factor, b, represents the number of elapsed 

b-tupling periods is worth discussing in detail prior to lessons on exponential and 

logarithmic growth. 

DISCUSSION 

The understanding that multiplying by A and then multiplying by B has the same 

effect as multiplying by AB is a critical understanding that must be applied throughout a 

lesson on exponential and logarithmic functions. Types of problems that involve such 

reasoning include: calculating percentages of values, determining partial growth factors, 

representing, interpreting and calculating logarithmic values, and working with and 

explaining logarithmic properties. A student who does not hold this understanding can be 

successful in answering questions to determine percentages of values, as reported when 

Lexi first calculated 1% of a value and then scaled her answer to find a different percent. 
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However, if it is our goal that students develop coherent understandings of exponential 

and logarithmic functions and other related topics, then as instructors we must ensure that 

this foundational understanding is also developed. In the following paragraphs, I describe 

how this crucial understanding is found in the types of problems listed above and I 

discuss possible ramifications of not having this understanding. 

Calculating Percents (x 1/100 x n = x n /100): When determining n% of a value, 

a student may first determine 1% of the reference value, either by dividing the reference 

value by 100 or multiplying the reference value by 0.01, and then scale the resulting 

value by a factor of n. Or, a student may multiply the initial value by n/100 (either in 

fractional or decimal form). While calculating a percentage of a value in two steps is a 

mathematically correct method, it is not the most productive method. A student who 

relies on the two-step method and has difficulties seeing multiplying a value by n/100 to 

determine n% of the reference value as being equivalent may also experience difficulties 

determining the percent change from growth factors in exponential situations. For 

example, if a student with this understanding is informed that every year the money in his 

bank account will grow by a factor of 1.08, he might find it difficult to conclude that the 

amount in his account a year later will be 108/100 or 108% of his current amount. 

Furthermore, he may struggle to conclude that the one-year percent change was 8%.  

Determining (Partial) Growth Factors: In the case of Sparky, to determine the 

1-day growth factor, we wish to find the number such that when we multiply by this 

factor 7 times it will have the same effect as multiplying by the 1-week growth factor, 2. 

Symbolically we write   b7 = 2  and then solve for b to find the 1-day growth factor. 
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However, a student that does not hold the first foundational understanding may have 

difficulties setting up this equation and not be able to see why 

  b× b× b× b× b× b× b = b7  or why   b7 = 2 . When Lexi was presented with the task of 

determining the 1-day growth factor, she appeared troubled and decided to divide the 1-

week growth factor by 7. However, she quickly concluded that her attempt was incorrect 

after observing that the growth factor was less than 1. Lexi experienced similar struggles 

when trying to determine the 3-week growth factor. Had Lexi developed this 

foundational understanding, she should have been able to conclude that when Sparky 

doubles in height three weeks in a row ( ×2 × 2 × 2 ), that will have the same effect as 

growing by a factor of 23, or 8. However, at the time, Lexi had not yet developed the 

foundational understanding that multiplying by A and then by B has the same overall 

effect as multiplying by AB, and had to resort to other measures in order to arrive at an 

answer that made sense to her.  

Logarithms: Recall   logb(m)  represents the number of b-tupling periods needed 

to m-tuple (or grow by a factor of m). In other words, this expression represents the 

number of times a value must b-tuple in order to have the same effect as m-tupling. In 

regards to the foundational understanding, m takes the role of  ×AB  and the b takes the 

role of the individual factors. If students do not hold the foundational understanding, they 

may struggle to envision the relationship between b and m. 

Logarithmic Properties: This foundational understanding is most clearly present 

in the first logarithmic property,   logb( XY ) = logb( X ) + logb(Y ) , which is interpreted as 

the number of b-tupling periods needed to XY-tuple is equal to the number of b-tupling 
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periods needed to X-tuple plus the number of b-tupling periods needed to Y-tuple. To 

correctly reason through problems involving this property, a student must first be able to 

conclude that multiplying by X and then multiplying by Y has the same effect as growing 

by a factor of XY. After developing this understanding of how the tuplings relate, he may 

consider the relationship between the corresponding tupling periods. Specifically, he may 

conclude that the XY-tupling period will be the same as the sum of the X-tupling period 

and the Y-tupling period. From this point, the student might be able conclude that this 

relationship will stay consistent as long as the tupling periods are measured using the 

same unit. Therefore, without this first foundational understanding, it is practically 

impossible to then reason about the first logarithmic property. Before the intervention in 

the fourth episode, Lexi struggled to identify the number of weeks it would take for 

Sparky to grow by a factor of 10 given Sparky’s 2-tupling period and its 5-tupling period. 

However, as Lexi completed the intervention in the fourth episode and attempted a 

similar task, she conceptualized and related relevant quantities, resulting in her reasoning 

that if it took Sparky one week to 2-tuple and approximately 1.58 weeks to 3-tuple, then 

it should take 1+1.58=2.58 weeks to 6-tuple. In other words, the number of 2-tupling 

periods (weeks) needed to 2-tuple plus the number of 2-tupling periods (weeks) needed to 

3-tuple is equal to the number of 2-tupling periods (weeks) needed to 6-tuple. 

Symbolically,  log2(2) + log2(3) = log2(6)  - a specific case of the first logarithmic 

property! 

The second foundational understanding students must develop for a coherent 

understanding of exponential and logarithmic functions is that the exponent on a growth 
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factor, b, represents the number of b-tupling periods that have elapsed. Students who hold 

a repeated multiplication view of exponentiation may struggle in interpreting the 

expression 21.5 in the Sparky context. However, a student who views the exponent on 2 as 

the number of doubling periods that have elapsed may interpret this expression to be 

representing the factor by which Sparky grows over a 1.5 week period. Similarly, such a 

student should be able to generalize this statement for any number of weeks and therefore 

be able to meaningfully define the exponential function relating Sparky’s height with the 

number of weeks that have passed since January 1st. Students who have developed this 

foundational understanding may find it easier to determine and interpret growth factors. 

For example, if the exponent on 2 represents an elapsed number of weeks and we wish to 

determine the 1-day growth factor, then since one day is 1/7th of a week, the factor by 

which Sparky will grow over the course of one day is 21/7. Similarly, provided 23/4 is a 

growth factor in the Sparky situation, one may interpret this to be the 3/4-week growth 

factor. With Aaliyah, we observed this understanding was not entirely necessary for her 

to be able to determine growth factors. However, when she was asked to interpret the 

amount of time it would take for the output value to grow by a specific factor, she 

experienced difficulties when she did not interpret the exponent to be the number of 

elapsed base-tupling periods. This understanding is also foundational for understanding 

logarithms and logarithmic properties. Even if a student understands   logb(m)  to be the 

number of b-tupling periods needed to m-tuple (or grow by a factor of m), he may not be 

able to correctly apply this understanding to solve for the input to an exponential function 

if he does not see the exponent on b as representing a number of b-tuplings. To 
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compound this issue, exponential notation is utilized in the third logarithmic property, 

  logb( X y ) = y logb( X ) , which can be interpreted as the number of b-tupling periods 

needed to X-tuple y times is y times as large as the number of b-tupling periods needed to 

X-tuple once. In order for this property to make sense to the student, it is crucial that he 

develops the understanding that the exponent on a growth factor, b, represents the 

number of b-tupling periods that have elapsed (among other understandings). 

CONCLUSION 

Many studies have examined aspects of logarithms that present difficulties for 

students, while others have investigated the effectiveness of interventions. In this study, 

however, I examined the subjects’ thinking as they participated in a conceptually based 

lesson on exponential and logarithmic functions in an effort to determine the 

understandings foundational to the idea of logarithm students must develop. My findings 

revealed two understandings foundational to learning logarithms; first that multiplying by 

A and then multiplying the resulting value by B has the same effect as multiplying the 

initial value by AB, and second that the exponent on a number b represents the number of 

elapsed b-tupling periods. The results of this study also suggest that the meaning for 

exponents may be strengthened as the student discusses tupling periods throughout the 

instructional intervention preparing for logarithmic notation. These findings will be used 

to improve the Sparky the Saguaro lesson for future research in an effort to provide 

students more opportunities to develop these foundational understandings at the 

beginning of the intervention. The Geogebra applet utilized in this study can be requested 

at egkuper@asu.edu. 
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APPENDIX 

 

Task 0: 

 

 
i. Represent 1% of Cactus C’s height. Is your representation an approximation? Is 

there exactly one height that corresponds to 1% of Cactus C’s height? What 
would you need to do to find the exact height corresponding to 1% of Cactus C’s 
height?  

ii. What would you need to do to find the exact height corresponding to 27% of 
cactus A’s height?  

iii. The height of Cactus C is how many times as large as the height of Cactus B? 
What height corresponds to 1% of Cactus B’s height? Using this measurement as 
a unit of measure, how tall is Cactus C? 

iv. The height of Cactus C is what percent of the height of Cactus B?  
v. How many feet taller is Cactus C than Cactus B? This difference of Cactus C’s 

and Cactus B’s height is how many times as large as Cactus B’s height? This 
difference in height is what percent of Cactus B’s height? 

vi. What is the relationship between the height of Cactus C as a percent of the height 
of Cactus B, and the difference in their heights as a percent of Cactus B’s height? 

 
Task 1: (using the same picture above) 

i. Cactus C (A, D) is how many times as tall as Cactus B?  
ii. Cactus B is how many times as tall as Cactus C (A, D)?  

iii. Given any two cacti, describe how you determine how many times as tall one is than 
the other? 

iv. Draw Cactus E given Cactus E is 5.5 times as tall as Cactus B. 
v. Draw Cactus F given Cactus C is 3 times as tall as Cactus F. 

vi. If Cactus B is 8 inches tall, how tall are Cacti A, C, D and E? 
vii. Cactus H is how many times as tall as Cactus G if Cactus G is 34 inches tall and 

Cactus H is 102 inches tall? 
viii. Cactus I is how many times as tall as Cactus J if Cactus J is x inches tall and Cactus I 

is y inches tall? 
ix. How would you describe the cactus’ growth in the diagram  

to the right given that the cactus on the left grew to be the  
cactus on the right?  

x. If a cactus was 23 inches tall when it was purchased and grew 
 to be 156 inches tall, by what factor did the cactus grow? 

xi. If a cactus was m inches tall when it was purchased and grew  
to be k inches tall, by what factor did the cactus grow? 
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Task 2 
i.  
 
 
 
 
________________________________________________________________________ 
(A) At some point in time,   (B) After some time, Sparky’s  (C) After some more time,  
Sparky the cactus was          height doubled (becomes 2 times as.  Sparky’s height then quadrupled  
this tall.                         large). Draw the resulting Sparky. (becomes 4 times as large) from 
                                                                                                      point (B). Draw the resulting   
        Sparky.                                                                                                                                                                                                                                                                                                       
 
ii.  By what overall factor did Sparky grow from point (A) to point (C)? 

In other words, overall Sparky’s height experienced a _____-tupling. 
iii.  If Sparky’s height becomes 3 times as large and then 5 times as large, overall his 

height will experience a ____-tupling. 
iv.  If Sparky’s height becomes 34 times as large and then 57 times as large, overall his 

height will experience a ____-tupling. 

v.  If Sparky’s height becomes X times as large and then Y times as large, overall his 

height will experience a____-tupling. 

 

Task 3 (This task requires the use of the Geogebra Applet) 

i. Emily purchased the mystical cactus shown in the video (Geogebra Applet) on 
Sunday, January 1st and named the saguaro Sparky. She decided to record the 
displayed time-lapse video of Sparky’s growth and noticed he was growing in a 
peculiar way. Watch the video and discuss what you observe. 

ii. Document and observe Sparky’s height every: week (2 weeks, 1/7 week (day), 
1.585 weeks, etc.) What changes? What stays consistent?  

iii. If Emily’s friend Morgan visited every Tuesday (every other Tuesday, every day, 
every third Tuesday, etc.) to document Sparky’s growth, would she make the same 
claims? 

iv. If Emily’s friend Kevin visited every Friday (every other Friday, every day, every 
third Friday, etc.) to document Sparky’s growth, would he make the same claims? 

v. What is the 1-week (2-week, 1/7th-week, 1.585-week, etc.) growth factor? 
vi. What is the 2-tupling (4-tupling, 1.1-tupling, 3-tupling, etc.) period? In other 

words, how long does it take Sparky’s height to become 2 (4, 1.1, 1.585, etc.) 
times as large? 
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Task 4 
Recall the 1-week growth factor is 2, and thus the 2-tupling period is 1 week.  
 

i. By what factor does Sparky grow every two (three, six) weeks?  
ii. By what factor does Sparky grow every 52 weeks (1 year)?  

iii. By what factor does Sparky grow every day (1/7th of a week)?  
iv. By what factor does Sparky grow every -1 weeks?  
v. By what factor does Sparky grow if no time has elapsed (0 weeks)?  

vi. By what factor does Sparky grow by every x weeks?  
vii. Suppose a different cactus’ height 17-tuples every year. By what factor will this 

cactus grow every week? 
 

 

Task 5 
Recall the 1-week growth factor is 2, and thus the 2-tupling period is 1 week. Also recall 
that initially (week 0) Sparky is 1 foot tall. Suppose that after x weeks, Sparky is y feet 
tall. 
 

i. Fill in the blank:  After x weeks, Sparky’s height is ___ times as large as his height 
at week 0. 

ii. Use the 1-week growth factor to represent this same growth factor. 
iii. Given any number of weeks, x, write an equation that determines the 

corresponding height of Sparky, y.  
iv. Now, suppose initially (week 0) Sparky was 3 feet tall and still doubled in size 

each week. Write an equation that determines y, Sparky’s height in feet, given x, 
the number of weeks since Sparky’s purchase. 

v. Suppose a pool is being filled with water so that the volume of water in the pool 
1.5-tuples every hour. At 9am, there were 15 gallons of water in the pool. Write an 
equation that determines the number of gallons of water in the pool, g, in terms of 
the number of hours since 9am, h. 

 

Task 6 

i. How many 2-tupling periods (weeks) does it take for Sparky’s height to result in a 
2-tupling (4-tupling, 8-tupling)? 

ii. How many 2-tupling periods (weeks) does it take for Sparky’s height to result in a 
3-tupling (5-tupling, 7-tupling)? 

iii. In general,   logb(m)  represents the number of b-tupling periods needed to result in 
an m-tupling. Use this notation to represent your answers to parts (i) and (ii). Verify 
your answers with the applet. 
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Task 7 
i. 
 
 
________________________________________________________________________ 
(A) At some point in time,   (B) After 1 week, Sparky’s height           (C) After about 1.585 weeks, Sparky’s  
Sparky the cactus was     doubled (2-tupled, became 2 times          height then tripled (3-tupled, became   
this tall.                     as large). Draw the resulting Sparky.      3 times as large). Draw the resulting        
                  Sparky. 
 
ii.  By what factor did Sparky grow from point (A) to point (C)? How long did it take to 

grow by this factor? 
In other words, overall Sparky’s height will experience a _____-tupling in _____ 
weeks. 

iii. If Sparky’s height 3-tuples then 5-tuples, overall his height will experience a _____-
tupling. 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed 
to result in a 3-tupling, the number of 2-tupling periods (weeks) needed to result in a 
5-tupling, and the number of 2-tupling periods (weeks) needed to result in a 15-
tupling. Write an equation representing the relationship between these three values. 
In other words, if it takes _______weeks to 3-tuple and _______weeks to 5-tuple, 
then it will take _______weeks to 15-tuple. 

iv. If Sparky’s height 34-tuples then 57-tuples, overall his height will experience a 
_____-tupling. 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed 
to 34-tuple, the number of 2-tupling periods (weeks) needed to 57-tuple, and the 
number of 2-tupling periods (weeks) needed to 1938-tuple. Write an equation 
representing the relationship between these three values. 
In other words, if it takes _______weeks to 34-tuple and _______weeks to 57-tuple, 
then it will take _______weeks to 1938-tuple. 

v. If Sparky’s height X-tuples then Y-tuples, overall his height will experience a _____-
tupling. 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed 
to result in a X-tupling, the number of 2-tupling periods (weeks) needed to result in a 
Y-tupling, and the number of 2-tupling periods (weeks) needed to result in a XY-
tupling. Write an equation representing the relationship between these three values. 
In other words, if it takes _______weeks to X-tuple and _______weeks to Y-tuple, 
then it will take _______weeks to XY-tuple. 
vi. Now, discuss how your equations would change had you measured in days instead 
of weeks. 

  



 

114 
 

Task 8 
 
i.  
 
________________________________________________________________________ 
(A) At some point in time,   (B) After some time, Sparky’s        (C) After 1 week, Sparky’s height  
Sparky the cactus was          height 5-tupled in size.               then 2-tupled in size from point  
this tall.                         Draw the resulting Sparky.              (B). Draw the resulting Sparky. 
 
ii.  By what factor did Sparky grow from point (A) to point (C)? If it took Sparky 

approximately 3.3219 weeks to grow by this factor, how long did it take Sparky to 5-
tuple? 

iii.  If it takes Sparky’s height 3.585 weeks to experience a 12-tupling and 2 weeks to 
experience a 4-tupling, how long does it take for Sparky’s height to experience a 3-
tupling? 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed 
to result in a 12-tupling, the number of 2-tupling periods (weeks) needed to result in a 
4-tupling, and the number of 2-tupling periods (weeks) needed to result in a 3-tupling. 
Write an equation representing the relationship between these three values. 
In other words, if it takes _______weeks to 12-tuple and _______weeks to 4-tuple, 
then it will take _______weeks to 3-tuple. 

iv.  Describe how you would determine the 17-tupling period given that the 34-tupling 
period is approximately 5.087 weeks 

v.  Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed 
to result in an X-tupling, the number of 2-tupling periods (weeks) needed to result in a 
Y-tupling, and the number of 2-tupling periods (weeks) needed to result in an X/Y-
tupling. Write an equation representing the relationship between these three values. 
In other words, if it takes _______weeks to X-tuple and _______weeks to Y-tuple, 
then it will take _______weeks to X/Y-tuple. 

vi.  Now, discuss how your equations would change had you measured in days instead of 
weeks. 

 
Task 9 
Recall that the 2-tupling period is 1 week. 
 

i. Determine the  24 = 16 -tupling period.  
ii. The 16-tupling period is how many times as large as the 2-tupling period?  

iii. Given that the quadrupling or 4-tupling period is 2 weeks, describe how you would 
determine the  450 -tupling period.  

iv. Use logarithmic notation to represent the number of 2-tupling periods (weeks) 
needed to result in an X-tupling and the number of 2-tupling periods (weeks) 
needed to result in an  X y -tupling. Write an equation representing the relationship 
between these two values. 

v. Now, discuss how your equations would change had you measured in days instead 
of weeks. 
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Task 10 
The 10-tupling period is about 3.3 weeks and the 15-tupling period is about 3.9 weeks. 
 

i. The 15-tupling period is how many times as large as the 10-tupling period? 
ii. Use logarithmic notation to represent the number of 2-tupling periods (weeks) 

needed to 10-tuple and the number of 2-tupling periods (weeks) needed to 15-
tuple. Write an equation representing the relationship between these two values. 

iii. How would your answer to (i) change if the two periods been measured in days? In 
years? How would your answer to (i) remain the same if the two periods been 
measured in days? In years? Explain. 

iv. Use logarithmic notation to represent the number of 1.104-tupling periods (days) 
needed to 10-tuple and the number of 1.104-tupling periods (days) needed to 15-
tuple. Write an equation representing the relationship between these two values. 

v. Compare your answers in (ii) and (iv). 
vi. Develop an equation relating   logb( X ) ,   logb(Y ) ,   logc( X ) , and   logc(Y ) (for 

  b,c, X ,Y > 0 ) 
 

Task 11 

i.  What does y represent in the expression   2 y ?  
ii.  Represent the number of 2-tupling periods needed to result in a   2 y -tupling using 

logarithmic notation. 
iii.  Represent the number of 2-tupling periods needed to result in a   2 y -tupling without 

using logarithmic notation. 
iv.  Write an equation relating your answers in (ii) and (iii). 
v.  Simplify   logb(bx )  . 

vi.  What does y represent in the expression   2 y = x ? 
vii. Represent the number of 2-tupling periods needed to result in an x-tupling using 

logarithmic notation. 
viii. Simplify   2

log2 ( x ) . 
ix.  Simplify   b

logb ( x ) . 
 
Task 12 
Recall   logb(x)  represents the number of b-tupling periods needed to result in an x-
tupling. 
 
i. Describe how   log2(x)  varies as x varies. 

ii. Graph the relationship of   log2(x)  with respect to x. If necessary, create a table of 
values. 
T/F: Every value of x determines exactly one value of   log2(x) . Explain your 
answer.  
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PAPER 2:  

SPARKY THE SAGUARO: TEACHING EXPERIMENTS EXAMINING STUDENTS’ 

DEVELOPMENT OF THE CONCEPT OF LOGARITHM 

 

ABSTRACT 

Studies have documented student difficulties in understanding and learning the 

idea of logarithm. However, few studies have examined student reasoning as they 

complete tasks designed to support them in acquiring strong meanings for this idea. This 

study investigated two undergraduate precalculus students’ ways of thinking and 

understandings of exponential and logarithmic functions as they examined growth 

patterns of Sparky – a mystical saguaro that doubled in height every week. The lessons 

were designed to support students in understanding foundational ideas for understanding 

and using the idea of logarithm and logarithmic properties meaningfully, including the 

ideas of growth factor and tupling (e.g., doubling, tripling) periods. This paper describes 

the reasoning abilities two students exhibited as they engaged with tasks designed to 

foster their construction of more productive meanings for the idea of logarithm. The 

findings of this study provide novel insights for supporting students in understanding the 

idea of logarithm meaningfully. 

KEYWORDS 

Exponent � Exponential � Logarithm � Logarithmic � Tupling-period � Growth Factor 

INTRODUCTION 

The idea of logarithm is useful both in mathematics (e.g., number theory – 

primes, statistics – non-linear regression, chaos theory – fractal dimension, calculus – 
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differential equations) and in modeling real-world relationships (e.g., Richter scale, 

Decibel scale, population growth, radioactive decay). Therefore, a goal for mathematics 

educators should be to assist students in developing coherent meanings for the idea of 

logarithm. How does one achieve this goal? One approach is to research the aspects of 

the idea of logarithm students have difficulties with. In particular, studies have shown 

that students have difficulty with logarithmic notation, logarithmic properties and 

logarithmic functions (Weber, 2002; Kenney, 2005; Strom, 2006; Gol Tabaghi, 2007). 

Another approach is to develop and test the efficiency of interventions relative to 

standard curriculum (Weber, 2002; Panagiotou, 2010). Although these methods may shed 

light on epistemological obstacles students encounter and/or the effectiveness of a non-

traditional intervention, neither approach examines the reasoning abilities needed to 

coherently understand and use the idea of logarithm. In fact, relatively few studies have 

examined what meanings students have for the idea of logarithm (Kenney, 2005; Gol 

Tabaghi, 2007), and fewer have examined how students come to conceptualize the idea 

of logarithm (Kastberg, 2002). In response, I propose to investigate students’ thinking 

and developing understandings as they work through a conceptually oriented exponential 

lesson designed to foster students’ construction of productive meanings for the idea of 

logarithm. 

I argue that a productive understanding of the idea of logarithm requires more 

than just memorizing and applying Euler’s definition after completing an exponential 

lesson. Rather, to understand the idea of logarithm meaningfully, one must first 
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conceptualize tuplings13 and their corresponding tupling periods in exponential situations. 

That is, one must attend to the multiplicative growth of the output quantity of an 

exponential function while also attending to the corresponding changes in the input 

quantity of an exponential function. After conceptualizing these quantities, one must 

attend to how they vary together and imagine one tupling period relative to another. 

Therefore, I claim that it is necessary for students to engage in quantitative reasoning and 

covariational reasoning to understand the idea of logarithm coherently. It is well 

documented that students who engage in quantitative reasoning are more likely to reason 

productively while working on conceptually challenging tasks (Thompson, 1993, 1994b; 

Carlson, 1998; Saldanha & Thompson, 1998; Carlson, Jacobs, Coe, Larsen & Hsu, 2002; 

Ellis, 2007; Castillo-Garsow, 2010; Hackenberg, 2010; Moore, 2010; Moore & Carlson, 

2012). Furthermore, Carlson et al. (2002) and Thompson and Carlson (2017) have argued 

that covariational reasoning is an essential way of thinking for constructing meaningful 

function formulas and graphs. Therefore, if a goal for students is for them to utilize the 

idea of logarithm as they work through conceptually challenging tasks, then it would 

follow that they should develop an understanding of the idea of logarithm that is based on 

their conceptualizing and representing quantities, while also attending to how the 

quantities’ values vary in tandem. 

This study investigated two undergraduate precalculus students’ understandings 

of the idea of logarithm as they each worked through an exploratory lesson on 

exponential and logarithmic functions. The findings of this study revealed an essential 

                                                
13 A b-tupling occurs when a quantity becomes b times as large. Therefore, a b-tupling period is the amount 
of change in one quantity (typically time) needed for a second quantity to become b times as large. We say 
that the second quantity has b-tupled over some interval of change of the first quantity. 
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conceptualization that students must construct in order to hold a productive meaning for 

many of the components of the idea of logarithm. That is, in order to reason through tasks 

involving logarithmic expressions, logarithmic properties, and logarithmic functions in a 

way that builds off prior meanings and serves to be useful for more complex tasks, 

students must conceptualize base-tupling periods as a multiplicative object. Specifically, 

students must conceptualize a b-tupling period as providing information about a specific 

change in the input quantity necessary to result in the output quantity growing by a factor 

of b. In this study, I modeled both students’ thinking as they participated in an 

exponential and logarithmic sequence designed to assist students in developing coherent 

meanings for the idea of logarithm. I also discussed the importance of conceptualizing 

this essential component in the context of the lesson.   

Research Question 

The primary question motivating this investigation is: 

- What understandings of the idea of logarithm do students develop during an 

exponential and logarithmic instructional sequence aimed at supporting students 

in acquiring a strong meaning for the idea of logarithm? 

LITERATURE REVIEW 

Quantitative Reasoning 

Smith and Thompson (2007) argue that if students are to utilize algebraic notation 

to assist them in representing ideas and reason productively, then their ideas and 

reasoning must become sophisticated enough to justify the use of the notation in the first 

place. It thus seems reasonable that logarithmic notation and properties should be 

introduced so that the notation represents measurable attributes of objects that students 
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have conceptualized. This approach has been referred to as quantitative reasoning 

(Thompson, 1990, 1993, 1994a, 2011) and describes the mental processes involved in 

conceptualizing quantities and the relationships between quantities. If a goal for students 

is for them to utilize the idea of logarithm as they work through conceptually challenging 

tasks, then it would follow that they should develop an understanding of the idea of 

logarithm that is built on quantitative reasoning. In this section, I briefly describe the 

components of quantitative reasoning. 

A quantity is a mental construction of a measurable attribute of an object 

(Thompson, 1990, 1993, 1994a, 2011). That is, quantities do not exist out in the world; 

they are created in the mind of an individual when she conceptualizes measuring a quality 

of an object (Thompson, 2011). Furthermore, one is said to participate in the act of 

quantification when, after conceptualizing a quantity, she conceptualizes the attribute’s 

unit of measure such that the attribute’s measure is proportional to its unit (Thompson, 

2011). The numerical measurement that a quantity may assume is referred to as a value. 

When the measurable attribute of an object doesn’t change throughout a situation, it is 

called a constant or fixed quantity. On the other hand, if the value of a quantity changes 

throughout a situation, we call it a varying quantity.  

Mathematics formulas and graphs are often used to model and describe how two 

or more quantities relate and change together. A quantitative operation occurs in the mind 

of an individual when “one conceives a new quantity in relation to one or more already-

conceived quantities” (Thompson, 2011, pg. 9). When one conceives of three quantities 

related by means of a quantitative operation, he has conceptualized a quantitative 

relationship. Changing which quantity is determined by the quantitative operation 
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changes the quantitative relationship (Thompson, 1990). When one analyzes a situation 

and assigns his observations (i.e. quantities, quantitative relationships) to a network of 

quantities and quantitative relationships, called a quantitative structure, he is said to 

engage in quantitative reasoning (Thompson, 1988, 1990, 1993, 1994a, 2011). 

Multiplicative Object 

When a student engages in covariational reasoning and conceptualizes two 

quantities’ values varying in tandem, she will likely encounter opportunities to 

conceptualize the coupling of the values simultaneously and use notation, a point on a 

graph or some other means to represent her conception. Researchers (Thompson & 

Saldhanha, 2003; Thompson & Carlson, 2017) refer to this conceptualization of the 

coupling of two quantities’ values as a multiplicative object. Consider, for example, the 

expression  log2(8) . I define  log2(8)  as the number of 2-tupling periods needed to result 

in an 8-tupling. This expression conveys information about two different tupling periods 

while simultaneously representing the number of the 2-tupling periods necessary to result 

in an 8-tupling (specifically this number is 3). I anticipate that students’ abilities to 

conceptualize the values of two (or more) quantities simultaneously as a new conceptual 

object will assist students in developing robust meanings for the idea of logarithm.  

Research Literature on Students’ Understandings of Exponents and Exponential 
Functions 

A student who conceptualizes exponentiation only as repeated multiplication will 

likely be limited to interpreting natural number exponents. In cases when an exponent is a 

non-natural real number, say −π, we need a way of thinking that will allow us to interpret 

the exponent. The interpretation of exponentiation as repeated multiplication is not 
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helpful here. While some researchers advocate a repeated multiplication approach (e.g. 

Goldin & Herscovics, 1991; Weber, 2002), others believe this approach limits students 

(e.g. Ellis, Ozgur, Kulow, Williams & Amidon, 2015; Davis, 2009; Confrey & Smith, 

1995). In particular, Confrey and Smith (1995) argue that the standard way of teaching 

multiplication through repeated addition is inadequate for describing a variety of 

situations such as magnification, multiplicative parts (i.e. finding a fraction of a split), 

reinitializing and creating an array. Weber (2002) proposed that students first understand 

exponentiation as a process (in terms of APOS theory) before viewing exponential and 

logarithmic expressions as the result of applying the process. A student with a process 

conception of exponent will be able to generalize her understanding to cases in which the 

exponent is a non-natural number. Specifically, Weber stressed to his students that “ bx  

represents the number that is the product of x many factors of b.” With this conception, 

we can describe  92.5  to be the number that is the product of two and a half factors of 9, 

while under the view of repeated multiplication, a student might write “ 9 ⋅ 9 ⋅ ? ”. If a 

coherent understanding of exponential functions (and later logarithmic functions) is 

desired of our students, it is imperative that they have productive meanings for 

exponents. 

Ellis et al. (2015) conducted a small-scale teaching experiment with three middle 

school students that examined continuously covarying quantities. The students were 

asked to consider a scenario of a cactus named Jactus whose height doubled every week. 

Eventually, the initial height, weekly growth factor and amount of time needed to double 

were altered to provide variety. The authors noticed three significant shifts in the 
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students’ thinking over the course of the study. At first, the students attended only to 

Jactus’ height and concluded he grew by means of repeated multiplication. Eventually, 

the students began to coordinate this repeated multiplication with the corresponding 

changes in the amount of elapsed time. The second shift involved students determining 

the factor by which Jactus’ height grew, for varying changes in the number of weeks, by 

means of calculating the ratio of two heights. During the third shift students generalized 

the reasoning described in the second shift to include non-natural exponents (i.e., to 

determine the 1-day growth factor). The authors noted that a student’s ability to 

coordinate the growth factor (or ratio of height values) with the changes in elapsed time 

contributed to the student successfully defining the relationship between the elapsed time 

and Jactus’ height. This study leveraged findings from Ellis et al.’s study of Jactus the 

Cactus.  

Research Literature on Students’ Understandings of Logarithms 

The topics of logarithmic notation and logarithmic functions often pose a variety 

of challenges to students (Kenney, 2005; Weber, 2002). Similar to the complexities 

present in function notation, logarithmic notation consists of multiple parts each with 

their own dual nature (Kenney, 2005). In the equation   logb(x) = y , b, x, and y can take 

on a variety of meanings to an individual – b often takes on the form of a parameter 

(staying consistent within the context of a problem, but varying from problem to 

problem), x serves as the input variable to the logarithmic function and is a tupling, and y 

serves as the output variable to the logarithmic function and is the number of b-tupling 
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periods14 needed to x-tuple. Kenney (2005) noted that because function names are often 

one letter, students do not naturally view log(x) as representing an output to a function. 

Weber (2002) recognized these and other obstacles students encounter and conducted a 

pilot study that compared a traditional approach to teaching logarithmic functions with a 

conceptual approach that introduced   logb(m)  as the number of factors of b there are in m. 

Weber’s way of discussing the meaning of a logarithmic expression more clearly 

describes what the multiple parts of the notation represent - therefore addressing the 

issues Kenney observed in her study. 

In addition to these unavoidable complexities, Kenney’s (2005) study uncovered 

other difficulties students have in understanding logarithmic notation. Kenny investigated 

students’ understandings of logarithmic notation in two phases. The data revealed that 

students displayed mixed understandings of the bases in the expressions. For example, 

the students appeared to think that different bases always meant the logarithmic 

expressions were not equivalent (with the inputs being the same). However, about 32% of 

the students in her study claimed   log3(x) + log3(x +1) = log5(x) + log5(x +1)  because the 

bases would cancel out. Students also claimed that the notation for the natural logarithm 

(ln) and the common logarithm (log) were equivalent. One possible reason for this 

misconception is that both of these logarithmic bases appear on graphing calculators and 

are often used when finding an input to an exponential function for a specific output 

value. The study also revealed that students would disregard or “cancel out” the word 

“log” when simplifying equations involving logarithms and solving for x. Despite the 

                                                
14 A b-tupling occurs when a quantity becomes b times as large. Therefore, a b-tupling period is the amount 
of change in one quantity (typically time) needed for a second quantity to become b times as large. We say 
that the second quantity has b-tupled over some interval of change of the first quantity. 
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aforementioned difficulties, a few of the students were successful in arriving at the 

correct answer. However, Weber (2002) found that this was an unlikely result of 

traditionally taught students.  

Weber’s (2002) pilot study examined the effects of non-traditional instruction of 

exponents and logarithms. The participants of the study were college students from two 

different college algebra and trigonometry classes at a university in the southern region of 

the United States. 15 students from each class voluntarily participated in the study. The 

first group of 15 students made up the control group and experienced traditional 

instruction on exponents and logarithms while the second group of 15 students 

participated in more conceptually taught lessons led by the author which incorporated the 

use of the program MAPLE. Students were taught a basic loop that used repeated 

addition to perform multiplications of integers and were later asked to write a similar 

program for exponentiation. Each class spent approximately the same amount of time 

covering the topics. Three weeks after instruction, students from each class were 

individually interviewed and asked a series of questions involving exponents, logarithmic 

expressions, logarithmic properties, and equations involving logarithmic expressions. 

While students in both groups were able to evaluate simple calculations, students in the 

experimental group were able to recall more properties of exponents and logarithms than 

the control group. These students were also able to provide justifications for the 

properties - unlike the students in the control group. Weber also reported that students in 

the experimental group were more likely to catch their mistakes when it came to 

identifying and justifying properties of logarithms and exponents. This data highlights the 

importance of and need for more coherent and conceptually taught lessons for exponents, 
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logarithmic expressions and logarithmic functions. This finding provides a compelling 

argument for the benefits of curriculum and instruction that is more conceptually focused.  

CONCEPTUAL ANALYSIS 

In this section, I present the conceptual analysis that guided the design of my 

intervention and goals for student learning of the idea of logarithm. In general, 

conceptual analysis is used to describe the mental operations that might explain why 

people think the way that they do (Glasersfeld, 1995). In this conceptual analysis, I 

convey my understanding of the idea of logarithm. In doing so, I focus on major 

constructions that need to be made as one develops the idea of logarithm for themselves. 

For example, I defined   logb(m)  to represent the number of b-tupling periods it takes to 

result in an m-tupling. To illustrate the usefulness of this definition, consider a task and 

solution (Figure 2.1). 

The starfish population in Hawaii has increased 20% per year since 1990 and is 

modeled by the function   f (t) = 1500(1.2)t , with t representing the number of years since 

1990. Determine how long it will take for the population to reach 3480 starfish.

  

  

(1)    f (t) = 1500(1.2)t

(2)  3480 = 1500(1.2)t

(3) 
3480
1500

= (1.2)t

(4)   2.32 = (1.2)t

(5)         t = log1.2(2.32)

(6)         t ≈ 4.6 years

 

Figure 2.1. A Solution to an Exponential Function 
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In line (3), we see the ratio 
 

3480
1500

. This calculates the factor by which the initial 

value of the exponential function grows. In particular, in the unspecified amount of time, 

the population of starfish grows by a factor of 2.32, or 2.32-tuples. Therefore, to 

determine precisely how long it takes for the population to 2.32-tuple, we must utilize the 

fact that the population of starfish 1.2-tuples every year, and ask the question, “How 

many years (1.2-tupling periods) does it take to 2.32-tuple?” Using logarithmic notation, 

we can represent this exact value as  log1.2(2.32) . Then, with the use of technology, we 

can determine  log1.2(2.32) ≈ 4.6 , and can conclude that after approximately 4.6 1.2-

tupling periods, or years, the starfish population will reach 3480 starfish. This definition 

for logarithm relies on the understanding that a designated tupling-period can be used to 

measure a different tupling-period. Of course, in order to discuss these ideas in a 

meaningful manner, the student must also develop a meaning for division as 

measurement, growth factors, tuplings and tupling-periods, and logarithmic notation as 

determining how many base-tupling periods are needed to grow by another factor.  

The meanings I hypothesize to be critical for understanding exponential and 

logarithmic ideas are further clarified in the following Taxonomy (Table 2.1). The table 

provides a more detailed description of the specific ways of thinking and understandings 

that are productive for students to construct in the process of learning about logarithms 

and logarithmic functions. This paper describes one conception that assists students in 

developing a number of these desired understandings (by means of more fine grained 

constructions). 
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Table 2.1 

Taxonomy of the Idea of Logarithm 

Conceptions related to the idea 
of logarithm Desired understanding 

Division as measurement To measure a value of Quantity A in terms of a value 

of Quantity B, we write 
 

Value of Quantity A
Value of Quantity B

 . If 

  

Value of Quantity A
Value of Quantity B

= m , we say Quantity A is m 

times as large as Quantity B. 
Multiplying by A and then 
multiplying by B has the same 
overall effect as multiplying by 
AB.   ( ×A× B = ×AB )  

If a value A-tuples (becomes A times as large) and 
then the A-tupled value B-tuples (becomes B times as 
large), overall the initial value will AB-tuple (become 
AB times as large). 

Growth Factor When coordinating the values of two quantities, if 
the value of the first quantity increases by n-units 
while the next value of the second quantity is m 
times as large as its current value, then the n-unit 
growth factor is m. 

The Exponential Relationship When relating two continuous quantities, Quantity A 
and Quantity B, if for equal changes in Quantity A, 
Quantity B grows by a constant factor, then the two 
quantities have an exponential relationship.  

Tuples (VERB) If the value of a quantity becomes m times as large, 
we say the quantity’s value m-tuples.  

Tuplings (NOUN) An m-tupling is the event in which the value of a 
quantity becomes m times as large. 

Tupling period An m-tupling period is the amount of change in the 
independent quantity needed for the dependent 
quantity to become m times as large. 

Exponent (on a value, b) The number of elapsed b-tupling periods. Written  
where x is the number of elapsed b-tupling periods. 

Growth Factor Conversion The factor by which a quantity will grow over x,  
b-tupling periods is represented as  bx . If   c1 = bx  , 
then one c-tupling period is the same as x b-tupling 
periods.  

LP3:   logb( X y ) = y logb( X )  The number of b-tupling periods needed to 
experience an Xy-tupling is y times as large as the 
number of b-tupling periods needed to experience an 
X-tupling. 
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LP4: 

  
logb( X ) =

logb( X )
logb(b)

=
logc( X )
logc(b)

 

The X-tupling period will always be k times as large 
as the b-tupling period (this value does not depend on 
the unit chosen to measure both the X- and b-tupling 
periods).  

LP5:   logb(bx ) = x  The number of b-tupling periods needed to 
experience a b-tupling, x times, is x. 

LP6:   b
logb ( x ) = x  If a value b-tuples   logb(x)  times, the number of b-

tupling periods needed to result in an x-tupling, the 
value will x-tuple. 

The Logarithmic Function A covarying relationship between an x-tupling and 
the number of b-tupling periods needed to experience 
an x-tupling (  logb(x) ). These two quantities vary in 
such a way that every value of the x-tupling 
determines exactly one value of the number of b-
tupling periods needed to experience an x-tupling. 

 

This Taxonomy highlights the reasoning abilities and understandings that are 

included in my hypothetical learning trajectory (HLT) (Simon, 1995; Simon & Tzur, 

2004) for learning the idea of logarithm. My HLTs consisted of a list of learning goals for 

students, tasks intended to promote such learning goals, and hypotheses about student 

learning within the mathematical context. The task associated with each learning goal 

typically progressed through four stages based on my hypotheses of student learning: (1) 

Activity Problem – offers a starting point for students, (2) Optional Activity Problem – 

encourages student to consider relationships between quantities and effects of previous 

actions but can still be verified by engaging with the activity, (3) Non-activity Problem – 

encourages student to reflect on his thinking as he engaged with the previous problems 

while considering relationships between quantities, (4) Abstract Problem – encourages 

student to generalize through reflection on activity-effect relationships. For example, the 

task designed to support students in developing an understanding of the first logarithmic 

property (Figure 2.5 in Results section) began with an activity that had the student draw 
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Sparky at different moments along a timeline. The student was provided information 

about Sparky’s initial height (in the form of a picture), the factors that Sparky’s height 

grew by, and the corresponding number of weeks it took to grow by the provided factors. 

The student could rely on her drawing to make conclusions about the overall growth 

factor after two consecutive tuplings and to determine the overall-tupling period. The 

remaining questions did not require the student to draw a picture documenting Sparky’s 

height, but still provided information about the consecutive tuplings that occurred and 

asked the student to determine the overall tupling and its corresponding tupling period. 

The second question involved growth factors that were small enough that if the student 

wished to document Sparky’s height with a diagram, she could. However the third 

question involved growth factors that were too large and the fourth question generalized 

the growth factors as variables – therefore requiring the student to think about how she 

could determine the overall growth factor and its corresponding tupling period in order to 

answer the questions rather than relying on the drawing activity. This progression was 

specifically designed to provide the student opportunities to advance and strengthen her 

thinking, while reflecting on the preceding questions. This progression was inspired by 

Simon and Tzur’s (2004) claim that a student learns (develops new ways of thinking) 

when she reflects on her actions and their effects when completing a task. The task design 

was further informed by their specific task sequence on equivalent fractions.  

THEORETICAL PERSPECTIVE 

This study proposes ways of thinking that are productive for learning and using 

the idea of logarithm. The intention is not to classify how every student will come to 

learn the idea of logarithm, but rather to model the mathematical realities of individual 



 

135 
 

students. This information should provide insights about the mental constructions (ways 

of thinking) that are critical for developing in all students. The theoretical perspective that 

guided the design of this study is radical constructivism (Glasersfeld, 1995). This theory 

proposes that knowledge is constructed in the mind of an individual and therefore cannot 

be directly accessed by anyone else. Under this perspective, researchers can, at best, 

attempt to form a model of students’ thinking (Steffe & Thompson 2000). A model is 

considered reliable when the student’s utterances, written work, and movements are in 

alignment with the model and does not necessarily have to be mathematically correct. 

That is, if the subject responds in a way that is mathematically incorrect, the researcher 

will be interested in modeling how the student was thinking for his claims to make sense 

to him. When a researcher develops such models, she is trying to model the student’s 

cognitive structures that comprise knowledge, known as schemes. These structures are 

organizations of mental actions or mental operations (reversible actions) and may even be 

complex and contain other schemes (Piaget, 2001). An action is “all movement, all 

thought, or all emotion – [that] responds to a need” (Piaget, 1967, p. 6). Researchers rely 

on a student’s observable actions when attempting to form models of his schemes, such 

as utterances, written work, movements or body language. 

Researchers who are interested in using the teaching experiment methodology to 

model student learning (i.e. cognitive structuring and restructuring) should make sure to 

provide students with opportunities for reflection (Derry, 1996). The goal of my study 

was to model my subjects’ knowledge development of concepts foundational to the idea 

of logarithm as they completed lessons in a teaching experiment designed to advance 

their meanings. My data collection and analysis focused on understanding and 
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characterizing the meanings the students constructed as they engaged in tasks and 

responded to questions that provided opportunities for reflection. 

METHODOLOGY 

For this study, I conducted two teaching experiments (Steffe & Thompson, 2000) 

that focused on advancing and characterizing students’ ways of thinking and meanings as 

they completed lessons that were designed to support their understanding of the idea of 

logarithm. I administered a pre-study survey to 124 students in four precalculus sections 

and recruited two precalculus undergraduate students, Abigail and Aaliyah (both 

pseudonyms), to participate in the teaching experiments. Abigail was chosen to 

participate in the teaching experiment because her responses to the pre-study survey 

suggested she had already developed the prerequisite understandings for learning the idea 

of logarithm and she explicitly stated that she did not know anything about logarithms. 

Abigail participated in six 2-hour teaching episodes over the course of a five-week period 

as a substitute for attending class on logarithmic ideas. Prior to the teaching sessions, 

Abigail attended classes on exponential functions. Her grade in the class at the start of the 

interviews was an A. Aaliyah, on the other hand, participated in the teaching experiment 

after attending her classes on the topic. Her pre-study survey responses suggested she had 

already worked with the idea of logarithm, but may have developed unproductive 

understandings. Her responses also revealed that she still needed to develop a few of the 

prerequisite understandings to the idea of logarithm. We met 7 times over the course of a 

3.5-week period for approximately 1.5 hours each session. Her grade in the class at the 

start of the interviews was an A.  

Prior to the start of each teaching experiment, I updated my hypothetical learning 
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trajectories (Simon, 1995; Simon & Tzur, 2004) for the idea of logarithm. I referred to 

these hypothetical learning trajectories as I developed and updated the progression of 

tasks used for each teaching experiment. The instructional sequence designed for this 

study evolved from the conceptually-based exponential situation Ellis et al. (2012, 2015) 

created focusing on Jactus the Cactus – the mystical cactus whose height grew 

exponentially with respect to time. To supplement the instructional sequence involving 

Sparky the Saguaro, a cactus whose height doubled in size each week, the students 

worked with two additional exponential situations. The first focused on Mary – a woman 

who made a batch of bread dough and set the dough in a warm place to rise. Mary 

noticed that the bread dough tripled in size every two hours. The second exponential 

situation involved filling a pool with water – specifically the volume of the water in the 

pool 1.5-tupled each hour. The tasks used in this study were designed to support the 

subjects in learning the foundational ideas of exponential functions and to promote a 

contextual interpretation of the idea of logarithm before introducing a generalized form. 

The subjects were not asked to complete assignments between teaching episodes. I 

discuss the repercussions of this decision in the Discussion section. 

Following each teaching episode, I conducted a retrospective analysis (Steffe & 

Thompson, 2000) and analyzed the students’ actions (verbal, written, and motions) 

following an open, axial and selective coding approach (Strauss & Corbin, 1998) in an 

attempt to develop models of student thinking and to inform future sessions. As an 

example, I considered the students’ use and explanation of the Geogebra applet images in 

the context of their solutions as a way to gain insights into their conceptions of the 

covarying quantities in the situation. During the analysis stage I watched the recordings 
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of each interview and made note of shifts in the student’s thinking and identified 

moments when the student made an essential mistake (Steffe & Thompson, 2000). In the 

subsequent episodes I tested my hypotheses, modifying my claims as needed, and asked 

questions I thought would support my subject in confronting problematic conceptions and 

develop desirable conceptions and ways of thinking (as described in my conceptual 

analysis). Following the teaching experiments, I revisited every episode again to refine 

my categorizations. The presentation of students’ thinking on each task in the teaching 

experiment is beyond the scope of this paper. My results describe two students’ 

development of essential meanings and ideas that are described in my conceptual analysis 

of logarithm, and revealed to be critical for constructing a strong meaning for the idea of 

logarithm.     

RESULTS 

In the following sections I report my analysis of the discussions between me and 

the subjects as they responded to tasks designed to advance their understanding of the 

idea of logarithm. In my analysis of these discussions I use my theoretical constructs to 

characterize progress in student reasoning and understanding.  

Tuples, Tuplings, Tupling Periods 

Introducing the language 

During their exploratory interviews I probed Abigail’s and Aaliyah’s meanings 

for colloquial terms such as doubles, tripled or quadruple. Their responses support that 

both subjects viewed each of these terms as describing multiplicative growth. When I 

prompted Abigail to explain what it meant for a cactus to double in height she replied by 

saying that the cactus’ height would become 2 times as tall. When prompting each 
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subject to describe how she would determine the cactus’ new height if his height doubled 

or tripled in size, both students stated that she would multiply the height of a cactus by 2 

or 3, respectively. Both students further acknowledged that there was no similar 

colloquial term to describe a cactus’ growth when its height grew by a factor of about 

6.78. I used this task as a segue for introducing the tupling language. I introduced the 

tupling language by discussing how instead of saying the cactus’ height became 6.78 

times as large, we can simply say the cactus’ height 6.78-tupled. I then explained that the 

term 2-tuple could be used to replace double. Subsequent to this discussion, each student 

attempted to use the tupling language to describe the growth of a cactus that began at m 

inches tall and grew to be k inches tall. For example, Aaliyah said, “you take k and divide 

it by m to say that it grew to be whatever-the-number-may-be-tupled.” Abigail responded 

by saying, “so it grew by k, m (wrote k/m)-tupled.” It is noteworthy that even though the 

students’ phrasing relative to tupling was sometimes lacking in precision, they both 

provided responses that suggested that they associated the use of the term tupled with 

multiplicative growth. 

Following the teaching episode where the new language was introduced, Abigail 

consistently used the tupling language correctly – including correct tense (e.g., 2-tuple for 

double, 2-tupled for doubled, 2-tupling for doubling.). There were a few times when 

Aaliyah’s word choice suggested that she viewed a “tuple” as a new unit of measure. For 

example, early on when asked to describe the overall growth of a cactus that X-tupled and 

then Y-tupled in height, Aaliyah stated, “you would take X and times it by Y to give you 

your amount of tuplings.” However, in the few instances when similar descriptions arose 

later in the teaching experiment, Aaliyah appeared to drop the preceding number out of 
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carelessness and was more specific when probed. 

Conceptualizing the base-tupling period as a multiplicative object 

Over the course of both teaching experiments, Abigail and Aaliyah’s use of the 

tupling period language improved in precision and accuracy as a result of repeated 

requests to use and interpret the new language. At first, both students either exclusively 

described a b-tupling period in terms of a specific amount of elapsed time, or as the 

number of times a quantity b-tupled in size. For example, when I asked Abigail to 

describe what a 3-tupling period meant in the Mary’s bread dough context15, she said, 

“Um, each time the dough is three times as large from when it started.” It is noteworthy 

that Abigail did not mention the amount of time needed for the dough to 3-tuple in size; 

her focus was on the multiplicative growth of the bread dough’s size. However, when I 

asked Abigail how long a 3-tupling period was, she responded immediately, “two hours.” 

These excerpts reveal that Abigail was capable of interpreting a 3-tupling period as 

representing the specific amount of elapsed time necessary for the bread dough to 3-tuple. 

It is noteworthy that Abigail did not spontaneously coordinate the elapsed time with the 

description of multiplicative growth. I had similar conversations with Aaliyah. When I 

asked her what the 5 in  35  represented, she replied, “All I’m thinking of right now is how 

it can be 5 times the bread can 3-tuple in size.” However, when I asked how many 2-hour 

periods elapsed in the same case, Aaliyah replied, “Five. Oh, it could also represent how 

many times the two-hour time frame has um, elapsed, or how many of them they were.” 

Like Abigail, Aaliyah first attended to the multiplicative growth of the bread dough and 

then attended to the corresponding elapsed time. There was no evidence to suggest that 
                                                

15 Mary is a woman who made a batch of bread dough and set the dough in a warm place to rise. Mary 
noticed that the bread dough tripled in size every two hours. 
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she simultaneously coordinated these two quantities on her own. However, both of these 

conversations were encouraging because they suggested that both students were on their 

way to conceptualizing a b-tupling period as a multiplicative object. Specifically, 

coordinating that a b-tupling period is a change in the input quantity corresponding to the 

event in which the output quantity b-tuples.  

The term “b-tupling period” allows one to simultaneously describe changes in the 

input quantity of an exponential relationship with the multiplicative growth in the output 

quantity. On the other hand, just discussing the change in the input quantity places a 

burden on the students to recall how the output quantity changes in tandem. In fact, both 

Abigail and Aaliyah experienced difficulties reasoning with multiplicative growth when 

they were only provided information about the elapsed time. For example, Abigail’s pre-

study survey responses, her responses during the exploratory interview, and her 

expressed meanings in the first half of her first teaching episode suggest that she 

understood that if a quantity’s value A-tupled and then the A-tupled value B-tupled, then 

overall the initial value would have experienced an AB-tupling. However, in the second 

half of the first teaching episode, after becoming familiar with the Sparky situation and 

shortly after justifying why an X-tupling followed by a Y-tupling corresponds to an 

overall XY-tupling, Abigail surprisingly claimed that the 3-week growth factor in the 

Sparky situation would be 6 “because it will be three periods times two, cause it’s 

doubling.” The introduction of a linear quantity such as elapsed time altered Abigail’s 

approach to multiplicative growth. Using the Geogebra applet, Abigail and I viewed 

Sparky’s growth for any three-week change and Abigail observed that at the end of the 3-

week interval, Sparky’s height was 8 times as large as the Sparky’s height at the start of 
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the 3-week interval. When asked why she thought that, she replied, “Three week period. 

Well it would have to be…Oh! So it’s just two (feet) times two times two times two. So it 

would be instead of um, three times two, which is what I was thinking as the factor, it 

would be 2 to the third. Two times two times two. Two to the third.” Both students 

exhibited similar difficulties when they confounded tupling periods with tuplings. 

During each teaching experiment, Abigail and Aaliyah sometimes referred to a b-

tupling period as a b-tupling (or vice versa). This conception created issues for the 

students as they worked on a variety of tasks, particularly because the term b-tupling 

period provides information about the input quantity to an exponential relationship and 

the term b-tupling provides information about how the output quantity to an exponential 

relationship is growing. For example, toward the end of Aaliyah’s teaching experiment, I 

asked her to interpret and approximate the value of  log2(3)  after being provided arrows 

representing both the 2-tupling and 3-tupling periods. She first described  log2(3)  to be 

“how many 2-tupling periods will it take to 3-tuple,” and then stated, “We can take your 

three tuplings and you can see how many times a 2-tupling period will fit into a 3-tuple. 

So that would be one, a little bit over a half, well technically 3 over 2 is one and a half.” 

Aaliyah’s first approximation was based on how many of the 2-tupling period arrows 

were needed to make up or “fit into” the 3-tupling period arrow (a correct approach). 

However, she also multiplicatively compared the tuplings themselves to conclude that 3 

is 1.5 times as large as 2. Aaliyah went on to state that the length of the provided arrows 

must have been incorrect since the 3-tupling period arrow was not exactly one and a half 

2-tupling period arrows long. In this example Aaliyah did not appear to distinguish 
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between her two methods for answering the question. While tuplings and tupling periods 

are obviously related, it is important that students develop individual understandings for 

both phrases – particularly because the idea of logarithm relies both on an understanding 

of tuplings and tupling periods. 

The Logarithmic Definition 

Before Introducing Logarithmic Notation 

During both teaching experiments, I engaged Abigail and Aaliyah with tasks 

(Figure 2.2) designed to assist them in conceptualizing the quantities that logarithmic 

expressions are used to represent. The purpose of the first task was to get the students to 

identify the overall tupling experienced by the volume of the water in the pool 

(essentially determining what would be the desired argument to a logarithmic 

expression). The second task was designed to assist the students in conceptualizing the 

quantity represented by a logarithmic expression. 
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1. Suppose a pool is being filled with water so that the volume of water in the pool 1.5-
tuples every hour. At 9am, there were 15 gallons of water in the pool. Over some amount 
of time (since 9am), the volume of the pool reached 123 gallons. Therefore, in this 
unknown amount of time, the volume of water in the pool: 
 
a. 15-tupled in size, or became 15 times as large 

b. 15/123-tupled in size, or became 15/123 times as large 

c. 123/15-tupled in size, or became 123/15 times as large 

d. 123-tupled in size 

e. None of the above. 

2. Suppose a pool is being filled with water so that the volume of water in the pool 1.5-
tuples every hour. At 9am, there were 15 gallons of water in the pool. Over some amount 
of time (since 9am), the volume of the pool reached 123 gallons. If we wish to determine 
the number of hours it takes for the volume to reach 123 gallons, we wish to determine: 
 
A. The number of 123/15-tupling periods it takes to 1.5-tuple 

B. The number of 1.5-tupling periods it takes to 123/15-tuple 

C. The number of 1.5-tupling periods it takes to 123-tuple 

D. The number of 123-tupling periods it takes to 1.5-tuple 

E. None of the above. 

Figure 2.2. Tasks Motivating the Idea of Logarithm 

In response to the first task, both students claimed that the growth factor could be 

determined by dividing the final output value by the initial output value, therefore 

choosing answer choice C. After reading through the possible answer choices to the 

second question, Abigail settled on answer choice B but was unable to explain why she 

knew that was the correct answer saying, “It’s hard to word. It’s just hard to- I don’t 

know how to.” However, when I asked her if there was anything about the other answer 

choices that made her worried that she picked the wrong one, Abigail confidently replied, 

“No.” I hypothesize that this was because she was beginning to conceptualize the number 

of 1.5-tupling periods as also representing the number of elapsed hours. That is, I 
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hypothesize Abigail may have interpreted answer choice B as also stating: The number of 

hours it takes to 123/15-tuple. On the other hand, Aaliyah, who had already been 

introduced to logarithms in her class, acknowledged that to find the desired number of 

hours, she would solve   123 = 15(1.5)x  for x by “put[ing] log in.” In particular, she wanted 

to evaluate 
 

log(123 / 15)
log(1.5)

 to determine the desired number of hours, but expressed that she 

didn’t know why her method worked other than it “gets x by itself.” I suggested we 

return to the task at hand in hopes of eventually understanding what is meant by the 

expression 
 

log(123 / 15)
log(1.5)

. After Aaliyah and I reexamined what was meant by 1.5-tupling 

period, she also settled on answer choice B stating, “I mean it looks like it matches up 

because 1.5 is replacing the x amount of hours, so for the most part it all looks right.” 

Both students acknowledged that problems like those in Figure 2.2 were essentially 

asking for the value of a specific exponent, however they each made an interesting 

attempt to determine the exact value. 

When Abigail and Aaliyah worked with problems of the form 
 

a
b
= cx  with x 

unknown and difficult to estimate, they both resorted to evaluating 
 
a
b

 and claimed that 

the value of the exponent was either equal to or could be determined from the resulting 

value. For example, when Abigail attempted to solve for h in the equation 
  
200
45

= 3h  she 

appeared to resort back to applying a familiar procedure as evidenced by her saying, 

“because h isn’t by itself.” She then determined 200/45 was approximately 4.4 and 
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claimed that 4.4 “time periods” had elapsed. Like Abigail, Aaliyah attempted to use a 

growth factor to determine the number of 3-tupling periods when working with the 

equation   200 = 45(3)x/2  stating, “Wouldn’t we take the 200 divided by 45 and then that 

answer divided by 2?...Because then that’ll give you the number of times three can 3-

tuple or triple per say.” These excerpts suggest that both Abigail and Aaliyah were 

attempting to solve for the unknown in the exponent – despite the fact that I did not ask 

them to determine this value. In an effort to determine the value of the unknown in the 

exponent, the students performed the only calculation available to them in an attempt to 

determine the (logarithmic) value. At this point I reminded the students that I was not 

asking them to determine the specific value, but rather to interpret what quantity’s value 

we would be finding if we did determine the exponent. I also informed the students that 

in some cases, these (soon-to-be-called logarithmic) values were easier to determine.  

After Introducing Logarithmic Notation 

I introduced logarithmic notation to both students after prompting them to 

evaluate or approximate the value of a logarithm for various numeric values. That is, for 

example, I first asked both of the students to determine the number of 2-tupling periods 

needed for Sparky’s height to experience a 4-tupling before introducing them to the 

expression  log2(4) . Abigail’s initial attempts to represent the number of 2-tupling 

periods needed to grow by a specific factor sometimes involved the value of the answer 

itself. For example, she had already determined that the number of 2-tupling periods 

needed to 2-tuple was one. However, instead of representing this number as  log2(2) , she 

wrote  log2(1) - writing the answer as the argument to the logarithmic function. After I 
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interpreted what she wrote down and gave a specific example of my own, Abigail 

correctly represented the specific logarithmic values – representing the number of 2-

tupling periods needed to 4-tuple as  log2(4)  and the number of 2-tupling periods needed 

to 5-tuple as  log2(5) , for example. Aaliyah also correctly represented the specific 

logarithmic values after an instructor example. I decided to evaluate the students’ 

understandings of logarithmic expressions using the Geogebra applet designed to 

examine Sparky’s growth. 

One of the viewing options in the Sparky Geogebra applet allows the user to view 

a dynamic image of Sparky at its current height simultaneously with a dynamic image of 

Sparky some number of “weeks before” (entered by the user). To evaluate the students’ 

understandings of logarithmic expressions, I asked each subject to explain what she 

would see if I entered expressions such as  log2(6)  in the “Weeks Before” box. In general, 

Abigail’s response involved approximating the number of weeks elapsed from when 

Sparky was the height of the Previous Sparky to when Sparky was the height of current 

Sparky. For example, when we entered  log2(6)  in the “Weeks Before” box, she 

anticipated that the two cacti would be a little over 2 weeks apart. She also stated how 

many times as large the current Sparky’s height would be than the Previous Sparky’s 

height. That is, when we entered  log2(6)  in the “Weeks Before” box, she stated that the 

current Sparky would “be 6 times larger” than the previous Sparky. Abigail’s 

descriptions of her anticipations suggest she coordinated both the amount of elapsed time 

represented by the logarithmic expression as well as the growth factor conveyed in the 

argument to the logarithm. On the other hand, Aaliyah did not spontaneously attend to the 
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elapsed time represented by the logarithmic expressions, but only attended to how the 

cacti’s heights would (multiplicatively) compare. For example, when we entered 

 log2(3.75)  in the “Weeks Before” box, she only stated that the current Sparky would be 

3.75 times as large as the previous Sparky. However, when probed, Aaliyah also 

discussed the amount of time that would separate the Previous and Current Sparkies. 

In these teaching experiments, the 2-tupling period was the most common tupling 

period used to measure all other tupling periods. In other words, in most of the 

logarithmic expressions discussed throughout the experiments, 2 was used as the base 

value. However, I also made sure to provide the students opportunities to share how they 

were thinking about logarithmic expressions and equations that involved other base 

values. For example, I asked the students to compare the expressions  log2(8)  and  log4(8)

. Abigail and Aaliyah each stated that both expressions were measuring the same overall 

growth (the 8-tupling) in two different ways – the first using the 2-tupling or one-week 

period, and the second using the 4-tupling or two-week period as the unit of measure. 

Abigail went on to say that  log2(8)  should be twice as large as  log4(8)  because the first 

expression measured the 8-tupling period with a one-week period and the second 

expression measured the 8-tupling period with a 2-week period. Aaliyah came to a 

similar realization after comparing the specific values of  log2(8)  with  log4(8) ,  log2(16)  

with  log4(16) , and  log2(64)  with  log4(64) , stating that the “4-tupling period will 

always be two times as large as the 2-tupling period” and concluded 

 

1
2

log2(64) = log4(64) . The students’ responses to this task suggest that they each began 



 

149 
 

to develop an understanding that the argument to the logarithmic expression was the 

tupling period being measured and that the base value in the expression represented the 

specific tupling period that was being used as the unit of measure. The students displayed 

similar ways of thinking when working with logarithmic equations involving more than 

one logarithmic expression. For example, when Abigail was asked in a later teaching 

episode how the logarithmic properties would change if instead of measuring everything 

in weeks we measured using different amounts of elapsed time, she stated, “I’m pretty 

sure the bases would just change.” She continued to think out loud in an attempt to verify 

her claim saying, “Ok, if it was a 6-day period. Because 2-tupling is a one week period. 

So six days would be um, yeah so just the bases would change.” Abigail’s attention to the 

dual nature of the tupling periods represented as base values in the logarithmic 

expressions suggests that Abigail viewed the subscript of logarithmic notation as also 

conveying an elapsed amount of time. However, Abigail knew to write the growth factor 

corresponding to the given amount of time as the base value in the logarithmic notation. 

For example, in the task Abigail was referring to, she concluded that changing the 

measuring stick from a 2-tupling period to a 6-day period would result in a new base of 

 26/7  - the 6-day growth factor. This example again suggests Abigail viewed the 

arguments to the logarithmic expressions as the tupling periods being measured 

(therefore left unchanged if measured using a different ruler) and that the base value in 

the expression represented the specific tupling period that was being used as the unit of 

measure. 

Imagery 
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Abigail: Before introducing Abigail to logarithmic notation, I asked her to 

determine the number of 2-tupling periods needed in order for Sparky to grow by 

different factors (specifically powers of 2). Abigail appeared to visualize the equivalent 

exponential equation and used repeated multiplication to determine and verify the 

specific number of 2-tupling periods (i.e., the exponent on 2) needed to result in the 

specific growth factor. For example, when Abigail was asked to determine the number of 

2-tupling periods needed to 2-tuple and 4-tuple, she gave the answers 1 and 2 

respectively and stated, “I’m seeing this as 2 to the 1 equals 2. So this [the exponent] is 

the number that we’re looking for. So 2 to the 2 equals 4.” In cases where the answers 

weren’t whole numbers she applied this same approach and estimated the whole number 

values the answer would fall between. This method appeared to be how Abigail typically 

visualized the number of b-tupling periods needed to m-tuple throughout the teaching 

experiment – also after logarithmic notation was introduced. For example, toward the end 

of the teaching experiment, Abigail was asked to justify the first logarithmic property. In 

response, she wrote exponential equations for each logarithmic expression, determined 

the value of the exponent, and verified that the equality held (Figure 2.3).  

 

 

 

 

 

 

 

Figure 2.3. Abigail’s Work to Justify First Logarithmic Property 
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Abigail expressed a desire to verify the second logarithmic property in a similar way, but 

I suggested she try to explain why the property is true without using specific values for b, 

X and Y. She proceeded to discuss increments of b-tupling periods, but did not attend to 

how the specific tuplings (X, Y and X/Y) were related, or what role they played in the 

property; in this case, we subtract one number of b-tupling periods from the other. I 

suggested we try imagining the three tupling periods as being represented using arrows. 

Abigail and I set up the diagram demonstrating the relationship between the tupling 

periods (Figure 2.4) and reasoned that Y-tupling and then X/Y-tupling will be equivalent 

to X-tupling. Afterwards, I asked her to explain the equation for the second property that 

she came up with (i.e.   logb( X / Y ) = logb( X ) − logb(Y ) ). She stated, “OK, ok! The 

number of times we b-tuple for something to X-tuple minus the number of b-tuplings it 

takes for us to Y-tuple something, would equal, aha ok, would equal the number of b-

tuplings it takes for something to X, Y (X/Y)-tuple.” It appeared as though Abigail’s 

engagement in this task helped her to begin to “see” the relationship between the three 

tupling periods. While Abigail still had a tendency to imagine the equivalent exponential 

notation throughout the experiment, this conversation opened a door to imagining the 

relationships between tupling periods differently. 
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Figure 2.4. Diagram Used to Represent the Relationship Between Tupling Periods in 
Second Logarithmic Property 

Aaliyah: During my interactions with Aaliyah, we spent extra time representing 

tupling periods using horizontal arrows. As a result, it appeared Aaliyah often imagined 

measuring one tupling period using another when solving tasks that were logarithmic in 

nature. For example, when trying to determine the number of 4-tupling periods needed to 

8-tuple in the Sparky context, Aaliyah stated, “Because without doing anything, 1-week, 

2-tupling period, 2-weeks, 4-tupling period, 3-weeks, 8-tupling periods. We’re looking at 

a 4-tupling period to find a 8-tupling period. And so that means you’re taking two weeks. 

So that’s basically saying oh how many times can we take the 4-tupling period and try to 

find the 8 and it’s one and a half because the four-tupling period won’t fit twice. So only 

half of it will.” After I introduced logarithmic notation, Aaliyah demonstrated an 

understanding that logarithmic equations could be written as exponential equations. 

However, this understanding appeared to be the result of a previous experience with 

Euler’s definition. Aaliyah stated she could “switch the log conversion so then it doesn’t 

have the log in it.” As the teaching experiment progressed, Aaliyah did not always 
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represent different tupling periods using arrows (unless encouraged to do so). During 

some of these conversations, there was not enough evidence to suggest that she applied 

the same measuring process to determine logarithmic values. 

Logarithmic Property #1:   logb( X ) + logb(Y ) = logb( XY )  

The Task (Answers listed in Appendix) 
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1. 

  
(A) At some point in time,     (B) After 1 week, Sparky’s height (C) After about 1.585 weeks,  
Sparky the cactus was     doubled (2-tupled, became 2 times           Sparky’s height then tripled (3-  
this tall.                     as large). Draw the resulting Sparky.       tupled, became 3 times as large)  
                    from point (B). Draw the resulting 
        Sparky. 
- By what factor did Sparky grow from point (A) to point (C)? How long did it take to 
grow by this factor? 
- In other words, overall Sparky’s height will experience a [6]-tupling in ___weeks. 
2.  If Sparky’s height 3-tuples then 5-tuples, overall his height will experience a ___-
tupling. 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to 3-tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to 5-tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to [15]-tuple? 
- Write an equation using logarithmic notation representing the relationship between 
these three values. 
3. If Sparky’s height 34-tuples then 57-tuples, overall his height will experience a ___-
tupling. 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to 34-tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to 57-tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to [34*57]-
tuple? 
- Write an equation using logarithmic notation representing the relationship between 
these three values. 
4. If Sparky’s height X-tuples then Y-tuples, overall his height will experience a ___-
tupling. 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to X-tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to Y-tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to [XY]-tuple? 
- Write an equation using logarithmic notation representing the relationship between 
these three values. 
5. Now, discuss how your equations would change had you measured in: 2-week periods, 
1-day periods, 1-year periods, and b-tupling periods. 
Figure 2.5. Task Designed to Assist Students in Developing an Understanding of the 
First Logarithmic Property 

This task was designed to assist the students in developing an understanding of 
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the first logarithmic property. Specifically, the questions provided information of 

Sparky’s growth over two consectutive periods of elapsed time (i.e., two sub-tuplings and 

their corresponding tupling periods). The students were guided to determine the overall-

tupling and then asked to determine its corresponding tupling period. Lastly, the students 

were then asked to make generalizations about how all three tupling periods were related. 

Abigail 

For the first question, Abigail initially determined the overall tupling claiming 

that from point A to point C, Sparky’s height would experience a 6-tupling. She appeared 

to rely on her understanding that an A-tupling immediately followed by a B-tupling 

results in an overall AB-tupling to make this conclusion. Abigail then relied on the 

timeline in the diagram to determine that the 6-tupling period would be 2.585 weeks. For 

the subsequent questions (2, 3, 4, & 5), a diagram of the situation was neither provided 

nor required of the students. Without drawing a diagram of the situation, Abigail 

determined that if Sparky 3-tupled and then immediately 5-tupled in height, overall his 

height would experience a 15-tupling. She then determined the number of weeks it would 

take to experience the 3- and 5-tuplings by evaluating  log2(3)  and  log2(5) , respectively, 

and noted that we could also determine the number of weeks needed for Sparky’s height 

to 15-tuple by evaluating  log2(15) . However, before we evaluated  log2(15) , I asked 

Abigail if we could determine the number of 2-tupling periods needed for Sparky to 15-

tuple using the information she had already determined (the number of 2-tupling periods 

needed for Sparky’s height to 3-tuple and the number of 2-tupling periods needed for 

Sparky’s height to 5-tuple). Abigail looked back at the first task and said, “3-tuples then 
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5-tuples. Oh! So if [he] 3-tuples and then he 5-tuples, ooh, OK I’m going to say I would 

say that we would add these ( log2(3)  and  log2(5) ) together.” This excerpt suggests that 

Abigail reflected on the effects of the actions she performed in the first task to conclude 

that in order to determine an overall-tupling period, she could add the two consecutive 

sub-tupling periods. Abigail completed the remaining tasks (questions 3 and 4) using this 

same reasoning – that, to determine the number of weeks it would take to AB-tuple, one 

could add the number of weeks needed to A-tupled and the number of weeks needed to B-

tuple. In addition, she completed the remaining questions by developing the relationship 

  log2( X ) + log2(Y ) = log2( XY )  and concluded that measuring the tupling periods using a 

different measurement would require a change in the base value.  

Aaliyah 

Aaliyah approached this set of questions in a similar manner to Abigail. One 

difference was that during the second question, before being asked to revisit her thinking 

in the first question, Aaliyah performed a variety of calculations with the values of 

 log2(3)  and  log2(5)  in an effort to determine the number of weeks it would take Sparky 

to 15-tuple. For example, she first attempted to multiply 1.585 and 2.322 (the 

approximate values of  log2(3)  and  log2(5) , respectively). She also suggested that she 

could multiply 1.585 weeks by 5 stating, “So then you want to take that many weeks 

[1.585] and you want to 5-tuple it.” This excerpt suggests Aaliyah did not distinguish the 

differences between tuplings and the corresponding tupling periods. However, after 

looking back at her work for the first question, she concluded that the 15-tupling period 

could be determined by adding the values of  log2(3)  and  log2(5) . 
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Logarithmic Property #2:   logb( X ) − logb(Y ) = logb( X / Y )  

The Task (Answers listed in Appendix) 

1. 
 
 
 
 
 
 (A) At some point in time,   (B) After some time, Sparky’s        (C) After a total of 3.3219 weeks,  
Sparky the cactus was          height grew by some factor.               Sparky’s height 10-tupled in size 
this tall.                   {2nd:}Draw the resulting Sparky.              from point (A).  
               From (B) to (C) he 2-tupled over 1 week.      {1st:} Draw the resulting Sparky. 
     - By what factor did Sparky grow from point (A) to point (B)? How long did it take 

Sparky to 5-tuple? 
2. Suppose in some unknown amount of time, Sparky’s height ___-tuples. 2 weeks (2-

tupling periods) later, Sparky’s height 4-tupled in size. If overall, Sparky’s height 12-
tupled in size over a 3.585 week (2-tupling) period, how long does it take for Sparky’s 
height to experience the ___-tupling? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to 12-
tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to 4-tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to [3]-
tuple? 
- Write an equation using logarithmic notation representing the relationship between 
these three values. 

3. If Sparky’s height Y-tuples then ___-tuples, overall his height will experience an X-
tupling. 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to X-tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to Y-tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to [X/Y]-
tuple? 
- Write an equation using logarithmic notation representing the relationship between 
these three values. 

Figure 2.6. Task Designed to Assist Students in Developing an Understanding of the 
Second Logarithmic Property 

This task was designed to assist the students in developing the second logarithmic 

property. Specifically, the questions provided information of Sparky’s overall tupling 

during a specific period of time as well as information of a sub-tupling and its 

corresponding tupling period. The students were guided to determine the remaining sub-
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tupling and then asked to determine its corresponding tupling period. Lastly, the students 

were then asked to make generalizations about how all three tupling periods were related.  

Abigail 

Abigail read through the first question and immediately concluded that since 

Sparky 2-tupled in height from point B to point C, he would have to be half of Sparky’s 

height at point C and therefore 5-times as tall as the Sparky at point A. She concluded the 

question stating that it would take Sparky 2.3219 weeks to experience the 5-tupling by 

subtracting the 1 week that it took to double from the 3.3219 weeks it took to 10-tuple. 

For the remaining questions, a diagram of the situation was neither provided nor required 

of the students. Abigail chose to not draw Sparky’s height at the various stages of his 

growth, but rather drew a timeline labeling both the tuplings and corresponding tupling 

periods as she read the question (Figure 2.7): “OK, so suppose in some unknown amount 

of time, Sparky’s height blank tuples. OK, so… some unknown amount of time, Sparky’s 

height blank tuples. Two weeks later, OK so we don’t, we don’t know the starting point. 

But this is the unknown tupling, then two weeks later, Sparky’s height 4-tupled in size, so 

times four. If overall Sparky’s height 12-tupled in size, oh my goodness, OK. Overall 

Sparky’s height 12-tupled in size, how long does it take for Sparky’s height to experience 

the blank tupling?”  
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Figure 2.7. Abigail’s Drawing for the Second Problem in the Set of Tasks 

 

Referring to her timeline, Abigail stated, “OK. I’m just trying to figure out if I should 

subtract this [12-4]? Yeah, I think I, I think that’s what it would be. So at this unknown 

time, I’m going to say he 8-tupled.” In an effort to help Abigail catch her mistake, I 

initiated the following conversation: 

Emily:  So he 8-tuples in size and then 4-tuples in size 

Abigail:  OK 

Emily:  What’s the overall tupling? 

Abigail: 32.  

Emily:  Ok, so is an 8-tuple what we’re looking for? 

Abigail:  No. So ok, I see. So 4 times 3 equals 12. So he 3-tupled. At this point he 

had 3-tupled. That’s why I was like, “I don’t know if I should subtract,” 

OK, two weeks later, if overall Sparky’s height 12-tuples in 3.585 weeks, 

how long does it take for Sparky’s height to experience the 3-tupling. OK 

so if this total is 3.585 minus 2 is 1.585 weeks. 

Abigail’s response revealed that she developed the understanding that she needed to find 

Scanned by CamScanner
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the number that when multiplied by 4 results in 12 in order to find the missing sub-

tupling value after reflecting on the relationship between the individual and overall 

growth factors. After determining this value, Abigail recognized that all she had left to do 

was find the difference between the corresponding tupling periods. In the generalized 

case, the students were told that Sparky’s height Y-tupled, then grew by an unknown 

factor, overall resulting in an X-tupling. Abigail struggled to determine the sub-tupling of 

X/Y. Abigail proposed Sparky would X/Y-tuple, but didn’t express confidence in her 

answer. She verified her thinking stating, “OK, well so if Y times something equals X, 

and X over Y, the Y’s would cross- cancel out.” This excerpt reveals that Abigail 

determined the sub-tupling value by choosing a hypothetical sub-tupling value, 

multiplying it with the provided sub-tupling value, and verifying that the provided 

overall-tupling value was the result. 

Abigail experienced fewer difficulties when determining the missing sub-tupling 

period. When she worked with specific values, Abigail subtracted the sub-tupling period 

that was given from the overall tupling period to arrive at the correct answer. When 

working with logarithmic notation, Abigail relied on her understanding of the first 

logarithmic property to initially conclude that   logb(Y ) + logb( X / Y ) = logb( X )  prior to 

her using algebra to construct the equation  logb( X / Y ) = logb( X ) − logb(Y ) . However, 

despite her conclusion, there was no evidence to suggest that she understood that to find 

the X/Y-tupling period, she could subtract the Y-tupling period from the X-tupling period. 

Furthermore, there was no evidence to suggest that she understood that the number of b-

tupling periods needed to X/Y-tuple was the same as the difference between the number 
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of b-tupling periods needed to X-tuple and the number of b-tupling periods needed to Y-

tuple. In a later episode, as previously discussed in the Imagery section, there was 

evidence to suggest that Abigail’s use of arrows to represent the individual tupling 

periods helped her see that finding the X/Y-tupling period could be achieved by 

subtracting the Y-tupling period from the X-tupling period.  

Aaliyah 

Aaliyah approached the first question in a similar way to Abigail. She first 

determined that from point A to point B, Sparky would 5-tuple in height and concluded 

that it would take 2.3219 weeks to experience the 5-tupling by subtracting the 1 week that 

it took to double from the 3.3219 weeks it took to 10-tuple. After reading the second 

question, Aaliyah expressed that she needed to draw a picture in order to answer the 

questions in the set. This suggests that Aaliyah did not reflect on the effects of her 

previous actions in the first task or at least did not feel comfortable relying on her 

reflection to answer the second question. Using her drawing, Aaliyah completed the 

second problem just as she did the first task. In the third question, Aaliyah struggled to 

determine the sub-tupling of X/Y, like Abigail. After she revisited her thinking on the two 

previous questions to see how she used the provided tuplings, she determined the missing 

sub-tupling would be X/Y. As Aaliyah attempted to write a generalization to determine 

the X/Y-tupling period using logarithms, she wrote the correct statement but claimed she 

felt she did something wrong. Aaliyah quickly changed her mind stating, “Nevermind, 

because it follows the log function. Cause if it’s something minus something, then it’s 

usually in the division form,” apparently relying on something she learned prior to the 

teaching experiment. 
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It is worth noting that this was the last of the logarithmic properties covered with 

Aaliyah during her teaching experiment. We were unable to discuss the remaining 

properties because of the prolonged time spent focusing on a number of prerequisite 

understandings to the idea of logarithm (Kuper, 2018a). Therefore, for the remainder of 

the paper, I will be focusing on the understandings Abigail developed. 

Logarithmic Property #3:   logb( X y ) = y logb( X )  

The Task (Answers listed in Appendix) 

1. Suppose we observed Sparky’s height 4-tuple in size three times in a row. On the 
paper provided, document Sparky’s height at these moments.   
- Represent and determine the overall growth factor for this situation. 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to 4-tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to [64]-
tuple?  
- Write an equation using logarithmic notation representing the relationship between 
these two values. 

2. If fifty 4-tupling periods elapse, overall Sparky will ___-tuple.  
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to 4-tuple? 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to [ 450 ]-
tuple? 
- Write an equation using logarithmic notation representing the relationship between 
these two values. 

3. If y X-tupling periods elapse, overall Sparky will ___-tuple. 
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to X-
tuple?  
- How many 2-tupling (1-week) periods need to elapse for Sparky’s height to [ X y  ]-
tuple? 
- Write an equation using logarithmic notation representing the relationship between 
these two values. 

Figure 2.8. Task Designed to Assist Students in Developing an Understanding of the 
Third Logarithmic Property 

The purpose of this task was to assist the students in developing the understanding 

that if y X-tupling periods elapse, an overall  X y -tupling would occur. Furthermore, the 

 X y -tupling period would be y times as large as the X-tupling period. 
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Abigail 

As Abigail began to work on the first question, she appeared to view tupling 

periods as happening at an instance instead of over some interval of the independent 

variable. This was revealed by her drawing the initial height of Sparky at week 0, then a 

4-foot tall Sparky at week 2 and when pointing to the initial cactus she said, “Are we 

including this initial one?” as if to say the two cacti she drew represented two of the three 

4-tuplings. I responded, “Can you use your fingers to demonstrate one 4-tupling period?” 

Abigail then moved her finger from the initial height to the 4-foot tall Sparky. She then 

proceeded to draw a 16-foot tall cactus and noted that after one more 4-tupling period 

Sparky would be 64 feet tall. I asked Abigail to think about the relationship between 

 log2(4)  and  log2(64) . As Abigail began discussing the corresponding tupling periods, I 

encouraged her to draw line segments to represent the tupling periods she was referring 

to. Immediately following that suggestion, we had the following conversation:  

Abigail:  OK. So this [4-tupling period] would be log base 2 of 4, and this [64-

tupling period] is log base 2 of 64. So it could be 3 on the other side here, 

so 3 log base 2 of 4 equals log base 2 of 64. 

Emily:  And how did you decide to take three and multiply by log base 2 of 4? 

Abigail:  Um, because if this is two weeks, and this is 6 weeks, 6 divided by 2 is 3.  

Emily:  And where do we see that three popping up? 

Abigail:  Um, three times in a row 

Abigail’s interpretation of  3log2(4)  made it appear as though she viewed the expression 

as representing three 4-tupling periods.  
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When asked to consider the situation where fifty 4-tupling periods elapse 

(question 2), Abigail stated, “OK. If fifty 4-tupling periods elapse, overall Sparky will … 

ok … so 50 log base 2 of 4 equals…um, so that would be log base 2 of 4 to the 50?” I 

asked her to explain her thinking and she replied, “Um, so just comparing it to this one 

[question #1], um, they’re both 4-tupling, 4-tupling periods…ok, yes, cause this [ log2(4)

] is a 4-tupling period and 50 of those have happened. And if these two equations, or 

these two expressions are equal to each other, um I, I don’t know if it works for all of 

them, but if we just move this [the 50] inside the parentheses.” Abigail appeared to be 

relying on her previous conclusions, so I encouraged her to make more sense of the 

relationship than just relying on “moving numbers around.” This suggestion resulted in 

the following conversation: 

Abigail:  OK. So this is saying…this is a two, this is a two-week period (points to 

 log2(4)  in expression  50log2(4) ). OK. So 50 times…if 50 4-tupling 

periods elapse, overall Sparky will 4 to the 50-tuple. Well yeah, I guess that 

makes sense. 

Emily:  And why? 

Abigail:  Um, because if log base 2 of 4 is a two week period, and which is a 4-

tupling period, and 50 of those happen, yeah, that that would make sense to 

me. 

Emily:  Ok, what would we expect this value ( log2(450 ) ) to be when we punch it 

into the calculator? 

Abigail:  Mmm…Should we know this? 
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Emily:  Well, think out loud. Think about the relationships that you’ve been talking 

about. 

Abigail:  Uh, I would expect it to be, ah! Ok, so (referring to previous work) if that’s 

two weeks times three of those, so in this case it would be 50 times 2 would 

be 100. I would expect to get 100. 

Again, Abigail appeared to interpret expressions in the form   n logb(m)  as representing 

the case where n m-tupling periods elapse. She also relied on her previous work to 

confirm her thinking - a tendency of hers as she worked on developing the generalized 

form of the logarithmic property as well (question 3).  

 

Logarithmic Property #4 (AKA Change of Base): 
  
logb( X ) =

logb( X )
logb(b)

=
logc( X )
logc(b)

 

The Task (Answers listed in Appendix) 
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1.  Suppose we observed Sparky’s height 2-tuple in size five times in a row.  
- On the paper provided, document Sparky’s height at these moments.   
- Determine the overall growth factor for this situation.  
- On the paper provided, identify the 2-tupling period and the [32]-tupling period. 
- The [32]-tupling period is how many times as large as the 2-tupling period.  
What unit are you using to measure the tupling periods in this situation? Will this 
affect your answer? 

2.  How many 4-tupling (2-week) periods need to elapse for Sparky’s height to 2-tuple? 
How many 4-tupling (2-week) periods need to elapse for Sparky’s height to [32]-
tuple?  
- Using this information, determine how many times as large the [32]-tupling period 
is compared to the 2-tupling period.  

3.  How many 10-tupling periods need to elapse for Sparky’s height to 2-tuple? How 
many 10-tupling periods need to elapse for Sparky’s height to [32]-tuple?  
- Using this information, determine how many times as large the [32]-tupling period 
is compared to the 2-tupling period.  

4. The 15-tupling period is how many times as large as the 10-tupling period? 
5. In general, the X-tupling period is ___times as large as the Y-tupling period. 

- Develop an equation relating   logb( X ) ,   logb(Y ) ,   logc( X ) , and   logc(Y )  (for 

  b,c, X ,Y > 0 ) 
Figure 2.9. Task Designed to Assist Students in Developing an Understanding of the 
Fourth Logarithmic Property 

The purpose of this task was to direct the student’s attention to the relative size of 

two tupling periods. Additionally, this task encourages the student to determine the 

relative size of two tupling periods using different units of measure (i.e., other tupling 

periods). The fourth question provides the student an opportunity to reflect on her 

thinking in the first three questions but also has the added complexity of not suggesting a 

unit to measure the 10- and 15-tupling periods. 

Abigail 

Abigail began the first question by drawing Sparky’s height after each 2-tupling. 

She identified the 32-tupling period and the 2-tupling period, and concluded that the 32-

tupling period was “5 times as large” as the 2-tupling period because the doubling 

“occurred five times.” She identified that she used the “2-tupling, 1-week unit” to 
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measure both of the tupling periods. I asked Abigail if her final answer would change if 

she had used a different ruler to measure the tupling periods and at first, she said that her 

answer would stay the same “as long as we’re consistent” but then changed her mind and 

said the answer would also change. I asked her to go ahead and determine how many 

times as large the 32-tupling period was compared to the 2-tupling period using the 4-

tupling period as her unit of measure (question 2). At first, she wanted to find the 

difference between her measurements but then recalled she needed to divide her 

measurements in order to find how many times as large the 32-tupling period is compared 

to the 2-tupling period. After observing that 2.5/0.5 was also equal to 5, Abigail 

concluded that the tupling period used to measure did not affect her answer. We finished 

this task using the 10-tupling period as the measuring stick (question 3). Abigail 

represented how many times as large the 32-tupling period was compared to the 2-tupling 

period by writing 
 

log10(32)
log10(2)

 and anticipated that when entered in a calculator, the value 

would be 5. Abigail also concluded that 
 

log2(32)
log2(2)

=
log4(32)
log4(2)

=
log10(32)
log10(2)

= 5  after 

reviewing her previous work.  

The fourth question asked Abigail to multiplicatively compare the 15-tupling 

period with the 10-tupling period. She began her work by stating, “It is 15 over 10 which 

is 1.5 times as large as the 10-tupling period.” Despite the confidence in her tone, Abigail 

wanted to also see what answer she would get if she “used logs.” She determined that 

 log2(15) ≈ 3.906  stating the value represented “the number of 2-tupling periods for 

something to 15-tuple” and determined  log2(10) ≈ 3.32 . After comparing her two 
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methods, she recognized that calculating 15/10 was not right because she was comparing 

“the tupling size.” Abigail concluded that the 15-tupling period would be 3.91/3.32 or 

 

log2(15)
log2(10)

 times as large as the 10-tupling period. 

As Abigail attempted to make a generalization, she began stating the X-tupling 

period would be “X over Y times as large as the Y-tupling period.” When I asked what 

quantities she was comparing when she wrote X/Y, she recognized that she had compared 

the tuplings and not the tupling periods. She then decided that she would need to use 

logarithmic notation to represent the tupling periods, but had a difficult time because she 

was not provided which tupling period to use to measure (i.e., the base value). Despite 

Abigail’s claims that changing the base didn’t matter in the previous equations, it seemed 

as though she still hadn’t made the realization that she could use any base and the 

relationship would still hold. I suggested we use the 2-tupling, 1-week period to measure 

both the X- and Y-tupling periods and Abigail concluded that 
  

log2( X )
log2(Y )

 determined how 

many times as large the X-tupling period was compared to the Y-tupling period. After 

making this claim, she was asked to relate   logb( X ) ,   logb(Y ) ,   logc( X ) , and   logc(Y )  and 

she concluded 
  

logb( X )
logb(Y )

=
logc( X )
logc(Y )

. 

Abigail’s difficulty distinguishing between tuplings and tupling periods affected 

her development of understanding the fourth logarithmic property. In response to both the 

fourth and fifth questions, Abigail compared the tuplings themselves and not the tupling 

periods. Recall she first claimed that the 15-tupling period was 1.5 times as large as the 
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10-tupling period in the fourth task before incorporating logarithms into her work and 

realizing that calculating 15/10 was not the correct calculation because she was 

comparing the tuplings and not the tupling periods. Similarly in the fifth task, Abigail 

initially concluded that the X-tupling period was X/Y times as large as the Y-tupling 

period before deciding she needed to use logarithmic notation to correctly represent the 

tupling periods. This data demonstrates the importance of distinguishing between 

quantities (specifically tuplings and tupling periods) while working on logarithmic tasks. 

To assist Abigail in developing the understanding typically presented as the 

change of base formula, that 
  
logb( X ) =

logc( X )
logc(b)

, I suggested we revisit the first scenario 

where Abigail concluded 
 

log2(32)
log2(2)

=
log4(32)
log4(2)

=
log10(32)
log10(2)

= 5 . She noted that the 

denominator of the first fraction was equal to one, therefore implying that 

 
log2(32) =

log2(32)
log2(2)

= 5 . Abigail applied this same approach in subsequent tasks 

involving logarithmic values with bases other than 10 or e. For example, I asked Abigail 

to determine the amount of time it would take for Sparky to become 100 feet tall (given 

that he started at a height of 1 foot tall and doubled in size each week). Abigail first set up 

the equation   2x = 100  and solved for x writing 
 

log2(100)
log2(2)

=
log10(100)
log10(2)

 concluding the 

answer was 6.64 weeks – suggesting she realized that when given a logarithmic 

expression she is unable to enter in her calculator, she must first set up a quotient of the 

original logarithmic expression and a logarithmic expression in which the original base is 
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both in the base and the argument, before changing the base to something she can 

calculate. In the future, I plan on developing a way to assist students in constructing the 

understanding that determining the value of   logb(m)  also calculates how many times as 

large the m-tupling period is than the b-tupling period. Doing so may help students who 

are struggling to understand why 
  
logb(m) =

logb(m)
logb(b)

, or furthermore why 

  
logb(m) =

logc(m)
logc(b)

. 

Logarithmic Property #5:   logb(bx ) = x  

The Task (Answers listed in Appendix) 

1. Simplify:    logb(bx )   2. Evaluate:  log2(252 )  

Figure 2.10. Task Designed to Assist Students in Developing an Understanding of the 
Fifth Logarithmic Property 

Unlike a number of the previous tasks, I began this task by presenting Abigail 

with the generalized version of the 5th logarithmic property for the purpose of evaluating 

her meaning for the idea of logarithm. In the case that her meaning for logarithm was 

insufficient to answer the first question, I was prepared to engage her in a task (question 

2) to advance her understanding.  

Abigail 

Abigail answered the first question quickly and concluded that the expression 

would simplify to x by stating   logb(bx ) = x logb(b) = x ⋅1= x . It appeared as though 

Abigail applied her understanding for the third logarithmic property to simplify this 

generalized case. For the second question, she immediately stated the answer would be 
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52 stating, “The number of two-tuplings it takes to 2-tuple 52 times is 52.” Abigail did 

not appear to develop or need to develop any additional ways of thinking about the idea 

of logarithm in order to answer these questions. 

Logarithmic Property #6:   b
logb ( x ) = x  

The Task (Answers listed in Appendix) 

1. Simplify:    b
logb ( x )   2. Evaluate:  2

log2 (17)  

Figure 2.11. Task Designed to Assist Students in Developing an Understanding of the 
Sixth Logarithmic Property 

Unlike a number of the previous tasks, I presented Abigail with the generalized 

version of the 6th logarithmic property first to evaluate the effectiveness of her meaning 

for the idea of logarithm. In the case that her meaning for logarithm was insufficient to 

answer the first question, I was ready to provide a specific example (question 2) to 

provide opportunities to advance her thinking.  

Abigail 

While working on the first question, Abigail said that the logarithmic expression 

in the exponent was throwing her off. I asked her to interpret the meaning of the exponent 

and she stated, “the number of b-tuplings for something to x-tuple.” I then asked her what 

an exponent on a value b typically represented and she said, “The number of b-tuplings - 

this b is tupled log base b of x number of times.” Despite her correct statements, Abigail 

did not appear to realize that if something b-tuples the number of times needed to overall 

x-tuple, then the value will x-tuple. I then decided to present her with the second question 

and asked her to evaluate the expression. She initially determined the value of  log2(17) , 

wrote this value as an exponent to the number 2, and then anticipated that she would get 
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17 when she plugged the expression into a calculator, stating, “Ok, well first we figured 

out what log base 2 of 17 was. And then we multiplied 2 times that number of times. I 

guess it’s just that, it’s just that – if you’re going to find the number of times you multiply 

it to 17-tuple, and then you’re going to 2-tuple that many times, you’re going to get this 

(17) number.” Following this explanation, she returned to the general expression and 

simplified it to be x. 

In the next interview, one week later, I presented Abigail with a new task (Figure 

2.12). I hypothesized that if I changed the quantitative relationship, Abigail would be 

more likely to view a logarithmic expression as the value of an exponent. 

Fill in the exponent/box to make the statement true (no calculator):  7.2         = 64.3 

Figure 2.12. Additional Task Examining Abigail’s Understanding of Sixth Logarithmic 
Property 

Abigail and I engaged in the following conversation as she worked through the task: 

Abigail:  Fill in the exponent slash box to make the statement true, no calculator. 

7.2 to what equals 64.3?  

Emily:  And if the box is too small you can just write your answer off to the side. 

Abigail:  Ok. I can’t use a calculator at all? 

Emily:  Nope.  

Abigail:  Um, statement true… 

Emily:  Can you describe what you would want to punch into a calculator if you 

had one? 

Abigail:  Um, I would do log base 7.2 of 64.3. 
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Emily:  And what would that represent? 

Abigail:  Um, this would represent the number of times something is 7.2-tupled to 

have an overall growth of 64.3. 

Emily:  And what does the exponent on 7.2 represent in that case?  

Abigail:  The number of 7.2-tupling periods for something to 64.3-tuple. 

Emily:  And how is what you just said different from how you interpreted the 

log statement? 

Abigail:  How’s it different? 

Emily:  Mhm 

Abigal:  I don’t know I think they’re the same, I mean I thought I said them the 

same way. They are the same.  

Emily:  So could we write that expression in the box and be happy, or is there 

something else that we need to do to make the statement true? 

Abigail:  If we wrote this in the box,…yeah, we could write that in the box. 

Emily: Let’s just kind of rewrite the statement, so 7.2 raised to this equals 64.3? 

You’re happy with that statement? 

Abigail:  Oh, yes. 7.2 to the log base 7.2 of 64.3 equals 64.3. 

It seemed as though this task made it easier for Abigail to see a logarithmic expression as 

the value of an exponent. I hypothesize that had I introduced this question prior to the 

generalized property a week earlier, Abigail would have experienced fewer difficulties. 

DISCUSSION & CONCLUSION 

Many studies have examined aspects of logarithms that present difficulties for 

students, while others have investigated the effectiveness of interventions. In this study I 
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examined two students’ thinking as they participated in a conceptually based lesson on 

exponential and logarithmic functions. Recall that the purpose of this study was to model 

the mathematical realities of individual students for the purpose of illustrating how 

particular students might reason when experiencing instruction aimed at teaching the idea 

of logarithm meaningfully. My findings revealed the importance of conceptualizing a b-

tupling period as a multiplicative object. That is, conceptualizing that a b-tupling period 

is a change in the input quantity corresponding to an event in which the output quantity 

grows by a factor of b may assist students in working with logarithms when comparing 

growth factors and the corresponding input intervals. When Abigail and Aaliyah only 

acknowledged the tupling or only acknowledged the elapsed time, their reasoning often 

led to unproductive conclusions. For example, recall Abigail’s initial struggles to 

conceptualize the 3-week growth factor in the Sparky situation. Despite having developed 

the understanding that A-tupling and then B-tupling results overall in an AB-tupling, 

Abigail stated that the 3-week growth factor would be 6 (not 8). On the other hand, recall 

Abigail’s work with the third logarithmic property – when Abigail coordinated both the 

tupling and the elapsed time when discussing the 4-tupling period, she experienced 

clarity in her thinking and concluded that  log2(450 )  would be 100 because 50 4-tupling, 

2-week periods elapsed. 

The results of this study also suggest that the imagery associated with logarithms 

may vary between students. Students may imagine the equivalent exponential form or 

think about different magnitudes of the input quantity in relation to the corresponding 

multiplicative growth. In addition, it may be beneficial to assist students in imagining 
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alternative representations of components of the idea of logarithm. Consider Abigail’s 

experiences with representing tupling periods with arrows when trying to justify the 

second logarithmic property. She appeared to make more sense of the relationships 

between tupling periods when she was able to “see” how the tupling periods related.  

Additionally, providing opportunities for the students to reflect on their previous 

thinking helped Abigail and Aaliyah strengthen their foundational understandings and 

advance their meaning for the idea of logarithm. Recall how both students realized that 

they could add the corresponding tupling periods as they looked back at their diagrams 

drawn in the first logarithmic property. Without this opportunity, the students might have 

just looked at how the numbers were related rather than thinking about how the 

referenced quantities were represented and related in the moment. As I stated earlier, the 

students in this study were not asked to complete any assignments between the teaching 

episodes. As a result, the students were not provided opportunities to engage in repeated 

reasoning of the idea of logarithm outside of the teaching episodes. This proved to be 

slightly troublesome when the students were asked to apply ideas they had previously 

encountered in a new context. For example, during the discussion focused on interpreting 

exponents as a number of elapsed base-tupling periods, Abigail interpreted an exponent 

on 8 as “the number of 8-tupling periods that have elapsed.” However, two episodes later 

(about 1.5-2 weeks later) Abigail appeared to regress back to expressing her prior 

meaning for exponent as repeated multiplication as evidenced by her describing the 

exponent on b as “the number of times you multiply b times itself.” This finding 

highlights the need for students to be engaged in repeatedly applying newly learned (and 

more productive) ways of thinking. It is also noteworthy that both students had a 
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tendency to revert back to prior ways of thinking that were productive for them in other 

contexts.  

It is highly unlikely that this study’s models of student thinking summarize all 

possible ways of thinking students have when participating in exponential and 

logarithmic lessons. Therefore, more research into students’ developing conceptions and 

reasoning abilities when working through lessons on the idea of logarithm (and 

exponential functions) must be conducted. As more research is conducted, we can 

continue to improve the design of logarithmic curriculum and provide professional 

development for teachers so they are better equipped to support students in developing 

productive understandings of the idea of logarithm.  

Finally, it is my hope that curriculum developers and researchers will have greater 

clarity about critical reasoning abilities and understandings that students need to acquire 

about the idea of logarithm. In particular, my descriptions of my tasks and my 

characterization of my subjects’ thinking as they engaged in these tasks should be useful 

in designing instruction to advance students’ meanings, in addition to helping other 

researchers’ focus their investigations.   

The Geogebra applet and tasks utilized in this study can be requested at 

egkuper@asu.edu. 

  



 

177 
 

REFERENCES 

Carlson, M. (1998). A cross-sectional investigation of the development of the function 
concept. In E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds.), Research in 
collegiate mathematics education III (pp. 114-162). Providence, RI: American 
Mathematical Society. 

 
Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational 

reasoning while modeling dynamic events: A framework and a study. Journal for 
Research in Mathematics Education, 33, 352-378.  

 
Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development 

of exponential functions, Journal of Research in Mathematics Education, 26, 66-
86. 

 
Davis, J. (2009). Understanding the influence of two mathematics textbooks on 

prospective secondary teacher’s knowledge. Journal of Mathematics Teacher 
Education, 12, 365-389. 

 
Ellis, A. B., Özgür, Z., Kulow, T., Williams, C. C., & Amidon, J. (2012). Quantifying 

exponential growth: The case of the Jactus. In R. Mayes, R. Bonillia, L. L. 
Hatfield, & S. Belbase (Eds.), Quantitative reasoning: Current state of 
understanding, WISDOMe Monographs (Vol. 2, pp. 93–112). Laramie: 
University of Wyoming.  

 
Ellis, A. B., Özgür, Z., Kulow, T., Williams, C. C., & Amidon, J. (2015). Quantifying 

exponential growth: Three conceptual shifts in coordinating multiplicative and 
additive growth. The Journal of Mathematical Behavior, 39, 135–155. 
doi:10.1016/j.jmathb.2015.06.004  

 
Glasersfeld, E. v. (1995). Radical constructivism: A way of knowing and learning, 

Studies in mathematics education. London: Falmer Press.  
 
Gol Tabaghi, S. (2007). APOS analysis of students’ understanding of logarithms. M. T. 

M. dissertation, Concordia University, Canada. Retrieved from Dissertations & 
Theses: A&I. (Publication No. ATT MR34693). 

 
Goldin, G., & Herscovics, N. (1991). Towards a conceptual-representational analysis of 

the exponential function. In F. Furinghetti (Ed.), Proceedings of the Fifteenth 
Annual Conference for the Psychology of Mathematics Education (PME) (Vol 2, 
pp. 64-71). Genoa, Italy: Dipartimento di Matematica dell’Universita di Geneva. 

 
Kastberg, S.E. (2002). Understanding mathematical concepts: The case of the 

logarithmic function. Doctoral dissertation, University of Georgia. Online text is 
available from Georgia libraries. 

 



 

178 
 

Kenney, R. (2005). Students understanding of logarithmic functions. In G. M. Lloyd, M. 
Wilson, J.L.M. Wilkins, & S. L. Behm (Eds.), Proceedings of the Twenty-Seventh 
Annual Meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (PME-NA). Roanoke, VA: Virginia Tech. 

 
Panagiotou, E. N. (2011). Using History to Teach Mathematics: The Case of Logarithms. 

Science & Education, 20, 1-35.  
 
Piaget, J. (1967). Six psychological studies. New York: Random House. 
 
Piaget, J. (2001). Studies in reflecting abstraction. New York, NY: Psychology Press.  
 
Simon M. A. (1995). Reconstructing mathematics pedagogy from a constructivist 

perspective. Journal for Research in Mathematics Education, 26, 114-145. 
 
Simon, M. A., & Tzur, R. (2004). Explicating the Role of Mathematical Tasks in 

Conceptual Learning: An Elaboration of the Hypothetical Learning Trajectory. 
Mathematical Thinking and Learning, 6(2), 91-104. 
http://doi.org/10.1207/s15327833mtl0602_2 

 
Smith, J., & Thompson, P. W. (2007). Quantitative reasoning and the development of 

algebraic reasoning. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the 
early grades (pp. 95-132). New York: Erlbaum. 

 
Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying 

principles and essential elements. In R. Lesh & A. E. Kelly (Eds.), Research 
design in mathematics and science education . Dordrecht, The Netherlands: 
Kluwer. 

 
Strauss, A. L. & Corbin, J. M. (1998). Basics of qualitative research: Techniques and 

procedures for developing grounded theory (2nd ed.). Thousand Oaks: Sage 
Publications.  
 

Strom, A. , (2006) "The Role of Covariational Reasoning in Learning and Understanding 
Exponential Functions" Paper presented at the annual meeting of the North 
American Chapter of the International Group for the Psychology of Mathematics 
Education, TBA, Mérida, Yucatán, Mexico Online <APPLICATION/PDF>. 
2013-12-16 from http://citation.allacademic.com/meta/p115799_index.html 

 
Thompson, A. G., Philipp, R. A., Thompson, P. W., & Boyd, B. A. (1994). Calculational 

and conceptual orientations in teaching mathematics. In A. Coxford (Ed.), 1994 
Yearbook of the NCTM (pp. 79-92). Reston, VA: NCTM. 
 
 
 

 



 

179 
 

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: 
Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for 
research in mathematics education (pp. 421-456). Reston, VA: National Council 
of Teachers of Mathematics. 

 
Thompson, P. W. (1985). Experience, problem solving, and learning mathematics: 

Considerations in developing mathematics curricula. In E. Silver (Ed.), Teaching 
and learning mathematical problem solving: Multiple research perspectives (pp. 
189-243). Hillsdale, NJ: Erlbaum. 

 
Thompson, P. W. (1993). Quantitative reasoning, complexity, and additive structures. 

Educational Studies in Mathematics, 25(3), 165-208. 
 
Thompson, P. W. (1988). Quantitative concepts as a foundation for algebra. In M. Behr 

(Ed.). Proceedings of the Annual Meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education Vol. 1 (pp. 
163-170). Dekalb, IL. 

 
Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. 

Hatfield, S. Chamberlain & S. Belbase (Eds.), New perspectives and directions 
for collaborative research in mathematics education WISDOMe Monographs 
(Vol. 1, pp. 33-57). Laramie, WY: University of Wyoming Press. 

 
Weber, K. (2002). Developing students’ understanding of exponents and logarithms. 

Proceedings of the Annual Meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education, 1-4, 1019-
1027.  

  



 

180 
 

APPENDIX 

Answers to Tasks designed to assist students in developing an understanding of the logarithmic 

properties 

Figure 2.5 

Answers 

1. Sparky grew by a factor of 6 in 2.585 weeks. In other words, overall Sparky’s height 
will experience a 6-tupling in 2.585 weeks. 

2. If Sparky’s height 3-tuples then 5-tuples, overall his height will experience a 15-
tupling. 
-  log2(3) ≈ 1.585  weeks 

-  log2(5) ≈ 2.322  weeks 

-  log2(15) = log2(3) + log2(5) ≈ 3.907  weeks 

-  log2(15) = log2(3) + log2(5)  
3. If Sparky’s height 34-tuples then 57-tuples, overall his height will experience a 1938-

tupling. 
-  log2(34) ≈ 5.087  weeks 

-  log2(57) ≈ 5.833  weeks 

-  log2(1938) = log2(34 ⋅57) = log2(34) + log2(57) ≈ 10.920  weeks 

-  log2(1938) = log2(34 ⋅57) = log2(34) + log2(57)  
4. If Sparky’s height X-tuples then Y-tuples, overall his height will experience a XY-

tupling. 
-   log2( X )  weeks 

-   log2(Y )  weeks 

-   log2( XY )  weeks 

-   log2( XY ) = log2( X ) + log2(Y )  

5. The bases of each of the logarithmic expressions would change to: 4,  21/7 ,  252 , b 
Figure 2.6 

Answers 

1. Sparky grew by a factor of 5 in 2.322 weeks.  
2. In this unknown amount of time, Sparky’s height 3-tuples. 

-  log2(12) ≈ 3.585  weeks 

-  log2(4) = 2  weeks 

-  log2(3) = log2(12) − log2(4) ≈ 1.585  weeks 

-  log2(3) = log2(12) − log2(4)  
3. If Sparky’s height Y-tuples then X/Y-tuples, overall his height will experience a X-

tupling. 
-   log2( X )  weeks 

-   log2(Y )  weeks 

-   log2( X / Y )  weeks  

-   log2( X / Y ) = log2( X ) − log2(Y )  
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Figure 2.8 

Answers 

1. The overall growth factor is  43 = 64   
-  log2(4) = 2  weeks 

-  log2(43) = log2(64) = 6  weeks 

- log2(43) = log2(64) = 3log2(4)   

2. If fifty 4-tupling periods elapse, overall Sparky will  450 -tuple 
-  log2(4) = 2  weeks 

-  log2(450 ) = 100  weeks 

- log2(450 ) = 50log2(4)  

3. If y X-tupling periods elapse, overall Sparky will  X y -tuple 
-   log2( X )  weeks 

-   log2( X y )  weeks 

-  log2( X y ) = y log2( X )  
Figure 2.9 

Answers 

1. The overall growth factor is 32 or  25   
- The 32-tupling period is 5 weeks. 
- The 32-tupling period is 5 times as large as the 2-tupling period. 

2.  log4(2) = 0.5  4-tupling periods are needed for Sparky’s height to 2-tuple. 

 log4(32) = 2.5  4-tupling periods are needed for Sparky’s height to 32-tuple. The 
32-tupling period is 2.5/0.5=5 times as large as the 2-tupling period. 

3.  log10(2) ≈ 0.301  10-tupling periods are needed for Sparky’s height to 2-tuple. 

 log10(32) ≈ 1.505  10-tupling periods are needed for Sparky’s height to 32-tuple. 

The 32-tupling period is 
 

log10(32)
log10(2)

= 5   times as large as the 2-tupling period. 

4. Students can use any tupling period to measure the 10- and 15-tupling periods. Since 
the 2-tupling period is commonly used throughout the Sparky situation, this may be 

the most used option. The 15-tupling period is 
 

log2(15)
log2(10)

≈ 1.176   times as large as 

the 10-tupling period. 

5. 
  

logb( X )
logb(Y )

=
logc( X )
logc(Y )

 

Figure 2.10 

Answers 

1.   logb(bx ) = x   

2.  log2(252 ) = 52  

Figure 2.11 

Answers 

1.   b
logb ( x ) = x  

2.  2
log2 (17) = 17  
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PAPER 3: 

THE IDEA OF LOGARITHM 

 

INTRODUCTION 

The idea of logarithm has many practical and theoretical uses (Vagliardo, 2004). 

Despite its functionality, the idea of logarithm is treated superficially in most precalculus 

textbooks. Definitions and properties are presented as statements of fact with little 

attention given to help students understand the quantities they relate. While a number of 

studies have examined the effectiveness of non-traditional interventions to teach 

logarithms (Hammack & Lyons, 1995; Weber, 2002; Panagiotou, 2011; Vos & Espedal, 

2016), research continues to report that students struggle to understand logarithmic 

notation, the logarithmic properties, and the logarithmic function (Kenney, 2005; Strom, 

2006; Weber, 2002; Gol Tabaghi, 2007). My work to support students in developing 

strong and more coherent meanings for the idea of logarithm began with an examination 

of the historical development of the idea of logarithm. I then leveraged the insights of this 

literature review to perform a conceptual analysis of what is involved in learning and 

understanding the idea of logarithm. The literature review and conceptual analysis 

contributes novel and useful information for curriculum developers, instructors, and other 

researchers studying student learning of this idea.  

HISTORICAL DEVELOPMENT OF THE IDEA OF LOGARITHM 

The idea of logarithm was introduced by John Napier in the year 1614 to make 

mathematical calculations more manageable (Stoll, 2006; Villarreal-Calderon, 2008; 

Panagiotou, 2011). Astrological work at the time involved the multiplication and division 
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of very large numbers – a time-consuming process. Leading up to the seventeenth-

century, mathematicians developed a variety of practices for simplifying such 

calculations to cut down the computation time. One common technique used by 

mathematicians, referred to as prosthaphaeresis, utilized trigonometric identities, such as 

 sin(α ) ⋅sin(β ) = 1
2 [cos(α − β ) − cos(α + β )] , to convert multiplication and division 

problems to problems involving only addition and subtraction (Villarreal-Calderon, 

2008). With today’s technology, this method seems overly tedious. However, at the time 

of Napier, prosthaphaeresis helped astronomers save time and reduce errors in their 

calculations and estimations (Villarreal-Calderon, 2008). 

 Another common method for simplifying calculations involving multiplication 

and division incorporated the use of arithmetic and geometric sequences. In 1544, a 

German mathematician, Michael Stifel considered the relationship between the arithmetic 

sequence {1, 2, 3, 4, …, n} and the geometric sequence {2, 4, 8, 16, …,   2n }. He noted 

that multiplying terms in the geometric sequence correlated with adding the 

corresponding terms in the arithmetic sequence (Katz, 2004; Villarreal-Calderon, 2008; 

Panagiotou, 2011). For example, to determine  4 ⋅32  (the product of the second and fifth 

entries in the geometric sequence), one could add the corresponding terms in the 

arithmetic sequence,  2 + 5 , and refer to that entry in the geometric sequence, 128 (the 

seventh term in the geometric sequence). This approach is limited to determining 

products of numbers that are powers of the same number. That is, using this method it is 

impossible to calculate  5 ⋅1370. This limitation inspired Napier to develop a method that 

could be used to calculate the product of any two numbers. 
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Napier considered a situation (Figure 3.1) that examined two points, P and Q – 

with P traveling along a ray (CD) and Q traveling along a line segment (AB), with 

segment AB having a length 10^7. The point Q (traveling along the line segment) began 

at one extreme end (point A) and moved toward the opposite end (point B), traveling at a 

speed proportional to the remaining distance needed to travel along the segment (QB). 

That is, the point Q travels geometrically (Ayoub, 1993; Villarreal-Calderon, 2008; 

Panagiotou, 2011). On the other hand, the point P (traveling along ray CD) began at the 

endpoint of the ray (point C) and moved along the ray at a constant speed equal to the 

starting speed of the point Q. That is, the point P travels arithmetically. Using this model, 

Napier concluded that at any given moment, the distance traveled by the point on the ray 

(CP) was defined as the logarithm of the distance remaining for the point to travel on the 

line segment (QB) (Cajori, 1893; Confrey & Smith, 1995; Katz, 2004; Villarreal-

Calderon, 2008; Panagiotou, 2011). This definition of logarithm is quite different from 

the standard definition of logarithm used today. One major difference is that the notion of 

a base with Napier’s logarithm is inapplicable. Also, Napier’s decision to define the 

length of AB as 10^7 meant that the Napier logarithm of one was not zero. Consequently, 

the logarithmic properties of logarithms today do not hold for Napier logarithms (Ayoub, 

1993; Panagiotou, 2011). Despite these major differences, Napier’s logarithms did what 

they were intended to do: they allowed one to multiply any two numbers using addition 

(Katz, 2004; Villarreal-Calderon, 2008). 
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Figure 3.1: Napier’s Logarithmic Situation 

Over the next 20 years, Napier created a table of logarithmic values. 

Subsequently, Napier and Henry Briggs, an English mathematician, decided that 

calculations would be easier to perform if the logarithm of 10 was 1, instead of 10^7 

(Villarreal-Calderon, 2008). Thus, the definition of the common logarithm was born. 

After Napier’s death in 1617, Briggs set out to determine the logarithms of prime 

numbers. Then, using his calculations, Briggs proceeded to calculate the logarithms of all 

natural numbers up to 20,000 and from 90,000 to 100,000 to as many as 14 decimal 

places, organizing the values in a table. Dutchman Adrian Vlacq set out to complete the 

table, and in 1628 he published the logarithms of all natural numbers between 1 and 

100,000 (Cajori, 1893; Villarreal-Calderon, 2008). Over the years that followed, people 

began to use the idea of logarithm in new ways. As a result, the definition of idea of 

logarithm also evolved.  

 At the beginning of the seventeenth-century, mathematicians recognized the 

functional relationship between the values in the table and began representing the 

relationship graphically. Eventually, the logarithmic function began appearing in calculus 

and the logarithmic series 
  
ln(1+ x) = x − x2

2
+ x3

3
− x4

4
= ...  was derived (Gol Tabaghi, 
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2007). Mathematicians began questioning whether the argument of the logarithmic 

function could be a negative number. In fact, Jean Bernoulli believed   log(−x) = log(x) . 

However, Leonhard Euler, one of Bernoulli’s students eventually proved that logarithms 

of negative numbers are not real (Boyer, 1968). Euler continued working with the 

logarithmic function and in the year 1770, he developed a new definition for the 

logarithmic function – one that described logarithms in terms of exponents. That is, “if x 

> 0, the logarithm of x to base a (a > 0, a ≠ 1), is the real number y such that  a y = x  and 

is symbolized with   y = loga (x) ” (Euler 1770/1984: 63-64). Euler’s definition has been 

widely accepted throughout the mathematical community and variations of his definition 

are often found in most of today’s curricula (Panagiotou, 2011).  

 The logarithmic function, like the trigonometric functions, is special in the sense 

that there is no simple rule for calculating the function’s values. Mathematicians relied on 

the use of tables to determine the values of logarithmic functions. However, just a few 

years after Napier published his definition, William Oughtred developed the slide rule – a 

tool to replace a book containing logarithmic tables. Over the years, improvements were 

made to the slide rule so that one could calculate fractional powers and roots, such as 

25.4 to the 7.1th power, and even trigonometric values (Stoll, 2006). The slide rule 

served to be very useful for centuries until it was used to create a computing machine that 

eventually made the use of the slide rule obsolete. In the year 1972, Hewlett-Packard 

came out with the HP-35 – the first pocket scientific calculator that exceeded the 

computational power of the slide rule (Stoll, 2006). With technology on the rise, 

improvements to calculators are still being made. In recent years, graphing calculators 
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have been programmed to calculate logarithmic values where the base can be a value 

other than 10 or e. Prior to this update, the user needed to know the change of base 

formula in order to calculate the value of  log1.2(3.7) , for example. What began as a 

search for a way to simplify calculations eventually led to the creation of one of the most 

useful devices in mathematics. 

  The idea of logarithm did not vanish with the advent of the calculator. Practical 

uses of the idea of logarithm persisted, including simplifying calculations by turning 

multiplication problems into addition problems and division problems into subtraction 

problems (Vagliardo, 2004). These uses are taught in standard precalculus level 

curriculum, frequently presented in the form of logarithmic properties that are used to 

simplify or expand logarithmic expressions, and later to determine complicated 

derivatives. Euler’s definition of logarithm provided a way to determine the inverse 

function for an exponential function. That is, the idea of logarithm can be used to undo 

exponentiation and can be applied to solve for the independent variable of an exponential 

function, thus expressing the independent variable of an exponential function in terms of 

its dependent variable.  

The usefulness of the idea of logarithm extends to advanced areas of mathematics 

(Vagliardo, 2004). For example, the idea of logarithm is used to locate primes in number 

theory, to describe natural growth and decay in biology, to formulate non-linear 

regression in statistics, to model the laws of motion in physics, in calculating fractal 

dimension in chaos theory, in interpreting the Richter scale in geology, and in calculating 

Ph in chemistry (Vagliardo, 2004). If a goal for students is that they develop rich 
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understandings of the relationships modeled in the aforementioned mathematics or 

sciences courses, it will benefit them to acquire a strong understanding of logarithm 

notation, logarithmic properties, and the logarithmic function. 

  A typical precalculus course introduces a variety of functions including linear, 

quadratic, exponential, polynomial, rational, trigonometric, their properties (domain, 

range, roots, concavity, initial values, over what intervals the function is increasing or 

decreasing, asymptotes, long-run behavior, etc.), and their inverses. Since the idea of 

logarithm falls under the topics covered in a typical precalculus course and is necessary 

for courses following precalculus, it seems reasonable to assume that the logarithmic 

function would be analyzed with as much scrutiny as other functions in precalculus. 

Unfortunately, however, this is not always the case. A review of 5 precalculus and 

calculus texts16 revealed that a typical section on the idea of logarithms first introduced 

Euler’s definition of logarithm and often presented   y = logb(x)  as the inverse to  y = bx . 

Shortly after stating the definition, the texts typically list the logarithmic properties and 

occasionally include a reference to the properties of exponents to justify the statements. 

The sections conclude with exercises that provide students practice for using the idea of 

logarithm to simplify and expand logarithmic expressions, solve for the input to an 

exponential function, etc. This approach leaves students with an impoverished image of 

the idea of logarithm and promotes an image that doing mathematics is about applying 

meaningless rules mindlessly. In addition, students who are introduced to Euler’s 

definition may view logarithmic notation as an instruction to rewrite the term using an 
                                                

16 (1) Spiegler, Adam, "Functions Modeling Change: A Preparation for Calculus" (2011). Faculty Books. 
92. (2&3) Stewart, J. (2010). Calculus: early transcendentals. Cengage Learning. [2nd and 6th editions] (4) 
Anton, H. Calculus with Analytic Geometry, 1988. (5) Carlson, M., Oehrtman, M., & Moore, K. (2010). 
Precalculus: Pathways to calculus: A problem solving approach. Rational Reasoning. 
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exponential equation in order to eliminate the logarithmic notation (Kenney, 2005). This 

may create further issues for students attempting to develop understandings of 

logarithmic expressions – where the student is not informed of what the expression is 

equal to, or the logarithmic properties – where more than one logarithmic expression is 

involved. In contrast, Weber’s (2002) approach to introduce   logb(m)  as the number of 

factors of b in m led to more students (compared to a control group) being able to recall 

and apply properties of exponents and logarithms. The results of Weber’s study suggest 

that students might benefit from a more coherent and conceptually focused curricula for 

introducing and teaching the idea of logarithm.  

BACKGROUND FOR CONCEPTUAL ANALYSIS  

In this section, I present my conceptual analysis of the idea of logarithm. I briefly 

examine the theoretical perspective and theoretical framework that informed the process 

of performing a conceptual analysis. I also examine Weber’s (2002) non-traditional 

definition of logarithm and provide a rationale for the definition I propose. Finally, I 

conclude with a discussion of the role of quantitative reasoning in my description of what 

is involved in understanding and learning idea of logarithm. 

Theoretical Perspective and Framework 

The purpose of conceptual analysis is to describe the mental operations that might 

explain why people think the way that they do (Glasersfeld, 1995). The idea of 

conceptual analysis stems from the theoretical framework of Piaget’s (2001) genetic 

epistemology and the theoretical perspective of radical constructivism. Piaget’s genetic 

epistemology focuses on both “what knowledge consists of [cognitive structures - 
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schemes] and the ways in which knowledge develops [what those structures do]” (Piaget, 

2001, p. 2). These cognitive structures, or schemes, are organizations of mental actions or 

mental operations (reversible actions) (Piaget, 2001). An action is “all movement, all 

thought, or all emotion – [that] responds to a need” (Piaget, 1967, p. 6). In a discussion of 

what it means to understand the idea of logarithm we must consider the individual’s 

schemes. For example, if a person has a meaning for the idea of logarithm, he has a 

scheme for the idea of logarithm. If he engages with a situation and associates the 

situation as involving the idea of logarithm, he has assimilated the situation to his scheme 

for the idea of logarithm. In cases of assimilation, no noteworthy learning takes place 

because the person remains in a state of equilibrium. Thompson and Saldanha describe a 

person’s understanding as “assimilation to a scheme” (2003). On the other hand, if the 

person engages with a situation and achieves outcomes that conflict with his anticipated 

results, the assimilation is unsuccessful and he will be in a state of disequilibrium. To 

cope with his unrest, he may modify his meanings or he may develop a new meaning 

altogether (Piaget, 2001). Learning takes place when either of these accommodations 

occurs.  

A central claim of radical constructivism is that knowledge is constructed in the 

mind of an individual and therefore cannot be directly accessed by anyone else. 

Therefore, while I am unable to access anyone else’s understanding of the idea of 

logarithm, I can do my best to convey my understanding of the idea of logarithm through 

this conceptual analysis. In doing so, I focus on major constructions that need to be made 

as one develops the idea of logarithm for herself. How people come to develop such 

constructions (possibly by means of “smaller” constructions) is beyond the scope of this 
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paper. 

Logarithm as a Number of Factors 

Weber (2002) defined   logb(m)  as the number of factors of b in m. Using his 

definition,  log5(125) is described as the number of factors of 5 in 125. The equation 

 log5(125) = 3  is a statement that there are 3 factors of 5 in 125.  While his definition 

presents logarithms more conceptually than Euler’s definition, the phrasing can be 

slightly misleading. For example, the phrase “factors of b” in the definition of   logb(m)   

may influence students to think of the prime factorization of b. Also, the phrase “in m” is 

vague. What does it mean for one number to be in another number? I found myself 

unable to reconcile these issues and decided to construct a definition for logarithm 

grounded in quantitative reasoning.  

Quantitative Reasoning 

Smith and Thompson (2007) argue that if students are to utilize algebraic notation 

to assist them in representing ideas and reasoning productively, then their ideas and 

reasoning must become sophisticated enough to justify the use of the notation in the first 

place. I argue that the same is true for the idea of logarithm. That is, before students begin 

using logarithmic notation and the logarithmic properties to represent their ideas and 

reasoning, their reasoning must identify a need for such tools. How does one develop 

such sophisticated reasoning? Smith and Thompson (2007) claim that it is through years 

of developing and using quantitative reasoning that one’s algebraic knowledge becomes 

meaningful and productive (pg. 10) for representing quantitative relationships. It is well 

documented that students who engage in quantitative reasoning are more likely to reason 
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productively while working on conceptually challenging tasks (Castillo-Garsow, 2010; 

Ellis, 2007; Hackenberg, 2010; Moore, 2010; Moore, K. C., & Carlson, M. P., 2012; 

Saldanha & Thompson, 1998; Thompson, 1993, 1994b). If a goal for students is that they 

utilize the idea of logarithm as they work through conceptually challenging tasks, then it 

would follow that they should develop an understanding of the idea of logarithm that is 

attentive to what quantities the logarithmic function relates. In this section, I describe 

quantitative reasoning and discuss its relevance in learning and understanding the idea of 

logarithm. 

A quantity is a mental construction of a measurable attribute of an object 

(Thompson, 1990, 1993, 1994a, 2011). That is, quantities do not exist out in the world; 

rather, they are created in the mind of an individual when she conceptualizes measuring a 

quality of an object (Thompson, 2011). Furthermore, one is said to participate in the act 

of quantification when, after conceptualizing a quantity, she conceptualizes the attribute’s 

unit of measure such that the attribute’s measure is proportional to its unit (Thompson, 

2011). The numerical measurement that a quantity may assume is referred to as a value. 

When the measurable attribute of an object doesn’t change throughout a situation, it is 

called a constant or fixed quantity. On the other hand, if the value of a quantity changes 

throughout a situation, we call it a varying quantity.  

Mathematics is often used to model and describe how two or more quantities 

relate. A quantitative operation occurs in the mind of an individual and is when “one 

conceives a new quantity in relation to one or more already-conceived quantities” 

(Thompson, 2011, pg. 9). When one conceives of three quantities related by means of a 

quantitative operation, he has conceptualized a quantitative relationship. Changing which 
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quantity is determined by the quantitative operation changes the quantitative relationship 

(Thompson, 1990). When one analyzes a situation and assigns his observations (i.e. 

quantities, quantitative relationships) to a network of quantities and quantitative 

relationships, called a quantitative structure, he is said to engage in quantitative reasoning 

(Thompson, 1988, 1990, 1993, 1994a, 2011). 

When a student engages in the essential constructs of quantitative reasoning she 

may end up developing a need for logarithmic notation on her own – possibly making the 

notation more meaningful to her. Consider the following example: Mary purchased a 

cactus on January 1st of this year and noticed the cactus was growing in a peculiar way. 

Mary might conceptualize the cactus’ (object’s) height (attribute) or elapsed (attribute) 

time (object) as quantities and decide to measure the cactus’ height using the cactus’ 

initial height at different moments since January 1st. Suppose she initially documented the 

cactus’ height on a wall and concluded that the cactus is one cactus tall on the first of 

January. One week later, Mary documented the cactus’ new height on the wall, measured 

its current height using its initial height as the unit of measure, and concluded that the 

cactus one week later had a measure of 2 (in units of the height of the initial cactus) – 

therefore participating in the act of quantification. Suppose she then concluded that in 

that one-week’s time, the cactus’ height 2-tupled (doubled). If Mary conceptualized the 

factor by which the cactus may grow (the tupling value) as a quantity, resulting from 

multiplicatively comparing the two heights, she engaged in a quantitative operation. If, 

after documenting the cactus’ growth over a long period of time, Mary concludes that the 

2-tupling (doubling) period is one week, she may be curious to determine how many 2-

tupling (doubling) periods need to elapse for the initial cactus to 9-tuple in height (to 
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determine how long she has until she needs to take the cactus outside). Mary could then 

use logarithmic notation to represent the value of that particular quantity – specifically, 

 log2(9) .  

In general, I define   logb(m)  to represent the number of b-tupling periods17 

necessary to result in an m-tupling. The steps used to solve for the inverse relationship to 

the general representation of an exponential relationship,   y = a(b)x , informed this 

decision. For example, when solving for x applying Euler’s definition, we get 

  x = logb( y / a) , therefore indicating that the argument to the logarithmic function is a 

y/a-tupling. That is, in order for the initial value of the exponential relationship to become 

y, the initial value must y/a-tuple or become y/a times as large. My conceptual analysis 

for the idea of logarithm expanded from this definition and examines components of 

exponential and logarithmic situations similarly. Following my conceptual analysis of the 

idea of logarithm, I illustrate the difference between algebraic reasoning and quantitative 

reasoning in an exponential and logarithmic setting. 

CONCEPTUAL ANALYSIS OF THE IDEA OF LOGARITHM 

Exponential and logarithmic relationships are two sides of a coin – when one 

discusses elements of one relationship, he is, in some form or another, discussing 

components of the other relationship as well. In this conceptual analysis, I examine a 

variety of aspects often categorized under exponential relationships because I see them as 

being important for one to come to understand the idea of logarithm. In particular, I 

develop the ideas of growth factor, the exponential relationship, tuplings and tupling 
                                                

17 A b-tupling period is the amount of change in one quantity (typically time) needed for a second quantity 
to become b times as large. We say that the second quantity has b-tupled over some interval of change of 
the first quantity. 
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periods, exponent, growth factor conversions, the exponential function, logarithmic 

notation, logarithmic properties and the logarithmic function. I also briefly examine a few 

prerequisite understandings one must have to make sense of these listed ideas.  

Division as Measurement (Prerequisite) 

Students must understand the construct of division as measurement. That is, to 

measure a value of Quantity A in terms of a value of Quantity B, measured in the same 

unit, we can calculate the quotient 
 

Value of Quantity A
Value of Quantity B

. If 
  

Value of Quantity A
Value of Quantity B

= m , 

we say the value of Quantity A is m times as large as the value of Quantity B. As long as 

Quantity A and Quantity B are measured using the same unit, this ratio will remain 

constant. 

Multiplying by A and then multiplying by B has the same overall effect as 
multiplying by AB ( ×A× B = ×AB ) (Prerequisite) 

Students must have the understanding that multiplying by A and then multiplying 

the resulting value by B is equivalent to multiplying the original value by AB. For 

example, multiplying some value by 2 and then the resulting value by 3 is equivalent to 

multiplying the original value by 6. Therefore, if a value A-tuples (becomes A times as 

large) and then the A-tupled value B-tuples (becomes B times as large), overall the 

starting value will AB-tuple (become AB times as large). 

Growth Factor / The Exponential Relationship 

When comparing two values of the same quantity (say value A and value B), we 

can determine how many times as large one value is than another by calculating a 

quotient to evaluate a ratio 
 

value B
value A

⎛
⎝⎜

⎞
⎠⎟

. If value B is m times as large as value A, then by 
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convention we say the quantity’s value grew by a factor of m, or became m times as 

large. If this particular (multiplicative) growth corresponds with a (additive) change of n 

in another quantity, then by convention we say the n-unit growth factor is m.  

When one attends to the values of two varying quantities, Quantity A and 

Quantity B, and notices that for equal changes in the value of Quantity A, the value of 

Quantity B grows by a constant factor, then there exists a geometric relationship between 

the two quantities. In the continuous case, we more specifically refer to the relationship 

between the two quantities as exponential. For the rest of this paper, I assume continuity 

unless stated otherwise.  

Tuples, Tuplings & Tupling Periods / Exponents / Growth Factor Conversions 

In this section, I discuss concepts foundational to exponential functions. I begin 

by justifying and defining a few terms I use in my conceptual analysis. I then discuss how 

I motivate exponential notation and argue how my definition for exponent is useful for 

converting from one growth factor to another growth factor (often called partial or n-unit 

growth factors).  

It has been my observation that students are comfortable in using colloquial terms 

such as doubles or triples to describe a quantity’s values becoming two or three times as 

large, respectively. Because the idea of logarithm builds off of growth factors, I wanted 

to introduce similar language that students could use to describe the case where a 

quantity’s values become 1.5 times as large, for example. Therefore, I say that to b-tuple 

(verb) is to become b times as large. Note: this is not to be confused with the definition of 

m-tuple as an ordered set of m numbers (in the m-dimensional Cartesian plane). So 

instead of using the term “double”, I would say 2-tuple. I use the phrase b-tupling (noun) 
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to represent the instance where a quantity’s value becomes b times as large, or the event 

in which a quantity’s value b-tuples. Finally, a b-tupling period (noun) is the amount of 

change in the input quantity of an exponential function needed for the output quantity of 

the exponential function to become b times as large. Typically, this first quantity is time, 

but it doesn’t have to be. 

Recall that for two exponentially related quantities, equal changes in the value of 

one quantity imply that the value of the other quantity grows by a constant factor. That is, 

for any change of n in the value of Quantity A, the value of Quantity B will become b 

times as large (or b-tuples). By convention, we say the n-unit growth factor is b. 

However, we can also say that n-units is the b-tupling period. Recall the b-tupling period 

is the amount of change of our exponential function input value needed for the output 

value to b-tuple, or become b times as large. If m b-tupling periods have elapsed (that is, 

nm units of the input quantity), then the value of the output will grow by a different 

factor. By convention, we write  bm  to represent the factor by which the output quantity 

grows when m b-tupling periods elapse. It is worth noting that this interpretation for 

exponents differs from the repeated multiplication approach because it takes into account 

all real values of m. For example, suppose the 4-tupling (or quadrupling) period for a 

population is one week and suppose 1.5 weeks elapse, then the factor by which the 

population grew over the course of the 1.5 weeks can be expressed as  41.5  (which is 

equivalent to 8). Or, suppose that for every 1 radian a dial rotates, the amount of frozen 

yogurt dispensed from a machine 1.5-tuples. Then if the dial rotates an angle of π  

radians, the amount of frozen yogurt dispensed from a machine will  1.5π -tuple.  
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Ellis and colleagues (2015) found that before students were able to reason with 

non-natural number exponents, they first had to reason with natural number exponents. 

Therefore, as students are beginning to conceptualize the idea of exponent, it may be 

necessary to present students with cases where m, the number of elapsed b-tupling 

periods, is a natural number. For example, suppose the 3-tupling (or tripling) period for a 

population is 1 week and suppose 2 weeks (two 3-tupling periods) have elapsed, then the 

factor by which the population grows over the 2 weeks is  3× 3 = 9 . To represent this 

factor, we can also write  32 , communicating that two 3-tupling periods have elapsed. In 

this instance, it is easy to calculate the 2-week growth factor – however, this is not always 

the case.  

Still assuming the 1-week growth factor is 3, suppose we now wish to represent 

the 1-year, or 52 week growth factor. We need a way to represent the growth factor that 

corresponds to the case where 52 3-tupling periods have elapsed; specifically, we write 

 352 . Similar reasoning can be employed to determine the 1-day, or 1/7th week growth 

factor. To represent the growth factor in the case where 1/7th of a 3-tupling period has 

elapsed, we write  31/7 . In both of these cases, we let the exponent on 3 represent the 

number of elapsed 3-tupling periods (1-week periods). This reasoning remains consistent 

for exponents less than or equal to zero, too. For example, in the case where no time has 

elapsed, the population would not change (i.e. grow by a factor of 1); this corresponds 

with the equation  30 = 1. If the change in the number of weeks is  −3  (i.e., we are looking 

“back in time” for a total of 3 weeks), then the  −3  week growth factor is  3−3  or 1/27 

(since over the 3 weeks prior to when 0 weeks have elapsed, the population would both 
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become 1 and would increase by a factor of 27). In general, if we let x represent the 

number of elapsed 3-tupling periods (1-week periods), then   3x  represents the x-week 

growth factor and can therefore be used to determine any other growth factor. 

The Exponential Function 

In this section, I describe how one might come to define an exponential function. 

To meaningfully discuss the ideas in this section, students must have developed the 

understandings outlined at the beginning of this conceptual analysis of division as 

measurement and growth factors. Students must also conceptualize exponents to 

represent the number of elapsed base-tupling periods, understand how to represent 

changes in quantities’ values, and recognize that for exponential relationships between 

two quantities, for equal changes in the input quantity, the output quantity grows by a 

constant factor.  

Suppose   (x1, y1)  and   (x, y)  are points that satisfy an exponential relationship. 

Since y is   y / y1  times as large as   y1 , and since the relationship is exponential, then for 

any change of   x − x1  in the input quantity, the output quantity will become   y / y1  times as 

large. Similarly, if we suppose the 1-unit growth factor is b, then for any change of   x − x1  

units in the input quantity, the corresponding growth factor will be   b
x−x1  (because  

1-unit or b-tupling periods elapsed). Therefore, the two different expressions representing 

the same growth factor are equivalent,   y / y1 = bx−x1 . We can also conclude that y is   b
x−x1  

times as large as   y1  (  y = y1b
x−x1 ). In the case where   (x1, y1)  is the vertical intercept, say 

(0, a), we have  y = abx . Therefore, if   f (x) = y , then   f (x) = abx , where a is the initial 
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value of the output quantity and b is the 1-unit growth factor. Consider Sparky, a saguaro 

cactus whose height is growing exponentially. If Sparky was 5 feet tall when he was 

purchased and 10 feet tall one week later, then in one week, he became 
 

10
5

= 2  times as 

large, or 2-tupled. Thus, the one-week growth factor is 2. If we wish to define the formula 

relating the number of weeks since Sparky’s purchase, x, and his height in feet, y, we can 

use the reasoning described above to conclude 
  

y
5
= 2x−0  or   y = 5(2)x . 

I recognize that this method of relating equivalent growth factors is not the only 

way to define exponential functions, nor is it the typical approach found in most 

curricula. However, ironically, students are often expected to use this equality when they 

solve for the inverse relationship of an exponential function. For example, when solving 

 y = abx  for x, students are often taught to divide both sides of the equation by a, before 

applying Euler’s definition for logarithm. I am unaware of any studies that have 

examined students’ understandings for this operation, although I would hypothesize that 

students would view this step as just another procedure to follow to “get the answer.” In 

this conceptual analysis, I place an emphasis on the exponential growth and encourage 

students to see a formula as emerging from conceptualizing and then representing new 

quantities in a situation. This is similar to an approach for the development of linear 

functions that begins by first conceptualizing how the two varying quantities are 

changing together, and then constructing a formula to represent this relationship.  

Logarithmic Notation 

Recall exponential functions have the quality that, for equal changes in the input 
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quantity, the output quantity grows by a constant factor. That is, for any change of n in 

the input quantity, the output quantity will b-tuple, or become b times as large. By 

convention, we say the n-unit growth factor is b. However, we can also say that n is the 

b-tupling period, the amount/value of change of our input to our exponential function 

necessary for our output to become b times as large.  

Often, when working with exponential functions, students are given explicit 

information about only one growth factor. This may be the one-year growth factor, the 

three-day growth factor, etc. This information also informs the student of a tupling 

period. For example, if the one-week growth factor is 2, then the 2-tupling period is one 

week. However, in a situation where the 2-tupling period is one week, a student may be 

interested in determining the number of weeks necessary to 10-tuple, or become 10 times 

as large (based on information presented in the task at hand). In this case, the 10-tupling 

period will be longer than the 2-tupling period (1 week), but can still be measured using a 

one-week unit of measure (or the 2-tupling period). However, since 10 is not a power of 

2, this value can be difficult to calculate. Moreover, in general, determining the change in 

the input of an exponential function necessary for the initial value of the function to m-

tuple, or become m times as large, is not a trivial task. That is, there is no simple rule that 

provides instructions on how to calculate the m-tupling period. However, with the use of 

modern technology, these calculations are possible. The 10-tupling period and the e-

tupling period are the most common units used to measure all other tupling periods. 

However, any tupling period can be used to measure the change in input necessary for the 

initial value of the function to m-tuple. For example, if the 3-tupling period is one day, 

we can use it to measure the 27-tupling period (3 days). To represent the number of 3-
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tupling periods needed to elapse in order for a 27-tupling to occur, we write  log3(27) . In 

general, we write   logb(m)  to represent the number of b-tupling periods it takes a value of 

our exponential function to experience an m-tupling.  

Logarithmic Properties  

I start with the meaning of “  logb(x) ” as “the number of b-tupling periods needed 

to result in an x-tupling”. After being introduced to and practice using logarithmic 

notation, students are often asked to manipulate logarithmic expressions or equations 

using one or more of the following logarithmic properties: 

1.   logb( X ) + logb(Y ) = logb( XY )  

2.   logb( X ) − logb(Y ) = logb( X / Y )  

3.   logb( X y ) = y logb( X )  

4. 
  
logb( X ) =

logc( X )
logc(b)

 (or more accurately, 
  

logb( X )
logb(b)

=
logc( X )
logc(b)

) 

5.   logb(bx ) = x  

6.   b
logb ( x ) = x  

The understanding that multiplying by X and then multiplying by Y is equivalent 

to multiplying by XY is foundational to understanding the first logarithmic property. 

Therefore, if a value experiences an X-tupling and then experiences a Y-tupling, overall 

the initial value will experience an XY-tupling. If we let  TX  represent the X-tupling 

period,  TY  represent the Y-tupling period, and  TXY  represent the XY-tupling period (each 

not yet measured in a specified unit), then the sum of the X-tupling period and the Y-
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tupling period should be the same as the XY-tupling period ( TX + TY = TXY ). Therefore, 

now measuring each of these tupling periods using the same unit, the number of b-tupling 

periods needed to result in an XY-tupling is the same as the number of b-tupling periods 

needed to result in an X-tupling plus the number of b-tupling periods needed to result in a 

Y-tupling, or   logb( X ) + logb(Y ) = logb( XY ) . If we consider a mystical cactus named 

Sparky whose height 2-tuples each week, and suppose his height experiences a 2-tupling 

and suppose his height then experiences an 8-tupling after the 2-tupling. His 2-tupled 

height will become 8 times as large. His height will have become 16 times as large as it 

was before it 2-tupled, for an overall 16-tuple in height. The number of weeks (2-tupling 

periods) needed to result in a 2-tupling (1 week) followed by the number of 2-tupling 

periods to result in an 8-tupling (3 weeks) will be the same as the number of 2-tupling 

periods needed to result in a 16-tupling (4 weeks). Symbolically, we represent this case as 

 log2(2) + log2(8) = log2(16) .  

To understand the second logarithmic property, one can build off the first 

logarithmic property and the understanding that X is X/Y times as large as Y. That is, if a 

value experiences a Y-tupling and then experiences an X/Y-tupling after the Y-tupling, the 

Y-tupled value will become X/Y times as large. Therefore, the value will have become X 

times as large as it was before it Y-tupled, for an overall X-tuple. If we let  TX  represent 

the X-tupling period,  TY  represent the Y-tupling period, and  TXY  represent the X/Y-tupling 

period (each not yet measured in a specified unit), then   TX /Y + TY = TX . Therefore, now 

measuring each of these tupling periods using the same unit, the number of b-tupling 
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periods needed to result in an X-tupling is the same as the number of b-tupling periods 

needed to result in an X/Y-tupling plus the number of b-tupling periods needed to result in 

an Y-tupling, or   logb( X ) = logb(Y ) + logb( X / Y ) . Alternatively, 

  logb( X ) − logb(Y ) = logb( X / Y ) . Considering the same example used for the first 

logarithmic property, we can calculate the number of weeks needed for Sparky’s height 

to experience an 8-tupling by subtracting the number of weeks (2-tupling periods) needed 

for Sparky’s height to experience a 2-tupling from the number of weeks (2-tupling 

periods) needed for Sparky’s height to experience a 16-tupling. 

The understanding that an exponent on a value, X, represents the number of X-

tupling periods that have elapsed is foundational to understanding the third logarithmic 

property. That is, if a value experiences y X-tupling periods, then overall the value will 

experience an  X y -tupling. If we let  TX  represent the X-tupling period and 
 
T

X y
 represent 

the  X y -tupling period (both not yet measured in a specified unit), then the  X y -tupling 

period will be y times as large as the X-tupling period, 
 
T

X y = yTX . Therefore, now 

measuring each of these tupling periods using the same unit, the number of b-tupling 

periods needed to experience an  X y -tupling is y times as large as the number of b-

tupling periods needed to experience an X-tupling, symbolically   logb( X y ) = y logb( X ) . 

Therefore, the number of weeks (2-tupling periods) needed to result in a  25 -tupling (

 log2(25) ) is 5 times as large as the number of 2-tupling periods needed to result in a 2-

tupling ( 5log2(2) ). 

A less discussed, but useful property of logarithms is the change of base formula. 
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This property is used to rewrite logarithmic expressions using a different base value, 

often as an alternative way of calculating the exact value, and is frequently presented as 

  
logb( X ) =

logc( X )
logc(b)

. To understand this property, students must have the understanding 

that A is A/B times as large as B. Therefore, if we let  TX  represent the X-tupling period 

and  TY  represent the Y-tupling period (each not yet measured in a specified unit), then  TX  

is   TX / TY  times as large as  TY . This relationship will not change based on the units used 

to measure either tupling period. That is, if we suppose   b > 0 ,   b ≠ 1  and use the b-tupling 

period to measure the X- and Y- tupling periods, then the X-tupling period will always be 

  

logb( X )
logb(Y )

 times as large as a Y-tupling period. Put another way, 
  

logb( X )
logb(Y )

=
logc( X )
logc(Y )

 for 

  b,c > 0 ,   b,c ≠ 1. Notice, if we let  Y = b , then 
  
logb( X ) =

logb( X )
1

=
logb( X )
logb(b)

=
logc( X )
logc(b)

. 

Considering the same example used for the previous logarithmic properties, the 3-tupling 

(tripling) period measured in weeks is about 1.585 and the 2-tupling (doubling) period 

measured in weeks is 1. Therefore, the number of weeks needed to 3-tuple (1.585 weeks) 

is 1.585/1 times as large as the number of weeks needed to 2-tuple (1 week). 

Alternatively, since the number of days will always be 7 times as large as the number of 

weeks, then the 3-tupling (tripling) period measured in days is  1.585(7) = 11.095  and the 

2-tupling (doubling) period measured in days is  1(7) = 7 . Thus, the number of days 

needed to 3-tuple (triple) will be  11.095 / 7 = 1.585 times as large as the number of days 

needed to 2-tuple (double). In general, the 3-tupling (tripling) period will always be 
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approximately 1.585 times as large as the 2-tupling (doubling) period. If we were to 

measure these periods in weeks (2-tupling periods), days (about 1.1-tupling periods), 

years ( 252 -tupling periods), or any other appropriate measurement the relationship would 

still be true. That is, 
  

log2(3)
log2(2)

=
log1.1(3)
log1.1(2)

=
log

252 (3)

log
252 (2)

=
logc(3)
logc(2)

≈ 1.585 .  

The understanding that the exponent on a value, b, represents the number of b-

tupling periods that have elapsed is foundational to understanding the last two 

logarithmic properties. Therefore, to represent that x b-tupling periods have elapsed, one 

writes  bx . Students must also understand that  bx may also represent a  bx -tupling. 

Additionally, the understanding that   logb(m)  represents the number of b-tupling periods 

needed to result in an m-tupling is also foundational to understanding the last two 

logarithmic properties. Therefore, since  bx  conveys that x b-tupling periods have elapsed 

and also conveys a  bx -tupling, then the number of b-tupling periods needed to result in a 

 bx -tupling is x. Symbolically, we write   logb(bx ) = x . On the other hand, if the number of 

elapsed b-tupling periods is   logb(b) , the number of b-tupling periods needed to result in 

an x-tupling, an x-tupling will occur. Symbolically, we write   b
logb ( x ) = x .  

The Logarithmic Function 

To conceptualize the logarithmic function in Thomspon and Carlson’s (2017) 

sense, one must first understand b and x to represent tuplings and   logb(x)  as representing 

the number of b-tupling periods needed to experience an x-tupling. He must then 

conceive of the x-tupling and the number of b-tupling periods needed to experience the x-
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tupling as “varying simultaneously such that there is an invariant relationship between 

their values that has the property that, in the person’s conception, every value of one 

quantity determines exactly one value of the other” (Thompson & Carlson, 2017, pg. 33). 

In particular, if we know the value for x, we can determine the corresponding value of 

  logb(x) , given a value for b. That is, for any given tupling, there will be exactly one 

number of b-tupling periods that are needed to achieve the same growth. 

THE IDEA OF LOGARITHM  

A goal for student learning of the idea of logarithm should include the 

aforementioned ways of thinking and understandings. As students become more fluent in 

using these ways of thinking I conjecture that students will be better equipped to use the 

idea of logarithm meaningfully to model quantitative relationships involving exponential 

growth. Repeated efforts to conceptualize and represent quantitative relationships that are 

related “logarithmically” should also strengthen students’ understandings of exponential 

growth and exponential functions. How to support students in developing such 

understandings is beyond the scope of this paper.  

My conceptual analysis calls for the idea of logarithm to be presented in a way 

that supports students in reasoning quantitatively through conceptually rich exponential 

and logarithmic tasks. To illustrate the difference between algebraic reasoning and 

quantitative reasoning in an exponential situation, consider the following task: Suppose 

cactus A was 14 feet tall on January 1st and doubles (2-tuples) in height each week and 

suppose cactus B is 5 feet tall on January 1st and triples (3-tuples) in height each week. 

After how many weeks will the two cacti be the same height? A typical algebraic solution 
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to this problem involves defining variables, developing expressions that represent the 

heights of the cacti, setting those expressions equal to one another, and solving for the 

unknown value. If x represents the number of weeks since January 1st, then   14(2)x  

represents the height of cactus A x weeks after January 1st, and   5(3)x  represents the 

height of cactus B x weeks after January 1st. We wish to solve   14(2)x = 5(3)x  for x. 

Although algebraic solutions may vary, a typical solution follows the form of the solution 

in Figure 3.2.  

  

14(2)x = 5(3)x

14
5

= 3x

2x

14
5

= 3
2

⎛
⎝⎜

⎞
⎠⎟

x

ln 14
5

⎛
⎝⎜

⎞
⎠⎟
= ln 3

2
⎛
⎝⎜

⎞
⎠⎟

x⎛

⎝
⎜

⎞

⎠
⎟

ln 14
5

⎛
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⎞
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= x ln 3

2
⎛
⎝⎜

⎞
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x =
ln 14

5
⎛
⎝⎜

⎞
⎠⎟

ln 3
2

⎛
⎝⎜

⎞
⎠⎟

 

Figure 3.2. A Typical Algebraic Response 

On the other hand, a response that utilizes quantitative reasoning does not require 

the use of symbols to represent relationships, but rather deals with the relationships 

themselves. Here is one example of such reasoning: Initially, cactus A’s height is 14/5 

times as tall as cactus B’s height. Therefore, cactus B’s height needs to 14/5-tuple as well 

as 2-tuple as many times as cactus A’s height did over the entire interval. For any one-
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week change, the height of cactus B 3-tuples – this is equivalent to the height of the 

cactus experiencing a 2-tupling and then immediately experiencing a 1.5-tupling. That is, 

the 2-tupled height becomes 1.5 times as large for an overall 3-tuple in height. So, from 

the start, any time that cactus B triples (3-tuples), the necessary doubling is taken into 

account. In Figure 3.3, the height of cactus B is documented at different moments of a 

one-week period, specifically demonstrating a doubling (2-tupling) and then immediately 

a 1.5-tupling. It is worth noting that the 2-tupling and 1.5-tupling periods for cactus B are 

less than one week long and remain constant throughout this situation (with the 2-tupling 

period longer than the 1.5-tupling period) (see Figure 3). Also, for any portion of a week, 

say w weeks (where   0 < w < 1), cactus A will grow by a factor of   2w  and cactus B will 

grow by a factor of   3w , or   2
w1.5w . That is, if w of a 3-tupling period has elapsed, then w 

of the corresponding cactus’ 2-tupling period will have elapsed and w of that same 

cactus’ 1.5-tupling period will have elapsed. Therefore, what remains to be determined is 

how many of these 1-week periods need to elapse for the accumulated 1.5-tuplings to 

result in a 14/5-tupling. The expression  log1.5(14 / 5)  represents this specific value. 

  



 

210 
 

Figure 3.3. Cactus B at Different Moments Throughout the First Week 

CONCLUSION 

In this paper, I discussed the historical development of the idea of logarithm and 

described the reasoning abilities and understandings possessed by a student who has a 

strong understanding of the idea of logarithm. In doing so, I’ve elaborated the role of 

quantitative reasoning in conceptualizing a logarithmic expression and logarithmic 

function. My conceptual analysis of the idea of logarithm should be useful to other 

researchers studying student learning of logarithm and to curriculum developers who 

wish to support students in developing strong meanings for logarithm. I did not explore 

how students come to develop these understandings, nor have I examined how to 

conclude that students have developed such understandings. However, it is my hope that 

readers view my characterizations of specific ways of thinking and understandings that 
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contribute to a productive meaning for logarithm as a useful theoretical grounding for 

designing curriculum and instruction to improve student learning of this idea.  
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CONCLUSION 

Many studies have examined aspects of logarithms that present difficulties for 

students, while others have investigated the effectiveness of interventions. In this 

dissertation study, however, I examined students’ thinking as they individually 

participated in a conceptually based lesson on exponential and logarithmic functions. In 

doing so, I gained insight on two understandings foundational to the idea of logarithm 

students must develop. In particular, students must develop the understanding that 

multiplying by A and then multiplying the resulting value by B has the same effect as 

multiplying the initial value by AB. This understanding is a critical and must be applied 

throughout a lesson on exponential and logarithmic functions. Types of problems that 

involve such reasoning include: calculating percentages of values, determining partial 

growth factors, representing, interpreting and calculating logarithmic values, and working 

with and explaining logarithmic properties. Additionally, I found that the understanding 

that the exponent on a number b represents the number of elapsed b-tupling periods is not 

necessary for determining growth factors. However, this understanding was necessary for 

one student, Aaliyah, to develop in order to determine an amount of elapsed time when 

provided a growth factor. Furthermore, even if a student understands   logb(m)  to be the 

number of b-tupling periods needed to m-tuple (or grow by a factor of m), he may not be 

able to correctly apply this understanding to solve for the input to an exponential function 

if he does not see the exponent on b as representing a number of b-tuplings. 

The findings of my dissertation study also revealed the importance of students 

conceptualizing a b-tupling period as a multiplicative object. That is, conceptualizing that 
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a b-tupling period is a change in the input quantity corresponding to an event in which the 

output quantity grows by a factor of b may assist students in working with logarithms 

when comparing growth factors and the corresponding input intervals. I also found that 

the imagery associated with logarithms may vary between students and that students may 

benefit from imagining alternative representations of components of the idea of 

logarithm. For example, students may imagine the equivalent exponential form of a 

logarithmic equation or think about different magnitudes of the input quantity in relation 

to the corresponding multiplicative growth. Additionally, providing opportunities for the 

students to reflect on their previous thinking helped the students strengthen their 

foundational understandings and advance their meaning for the idea of logarithm. My 

findings also highlighted the need for students to be engaged in repeatedly applying 

newly learned (and more productive) ways of thinking.  

It is highly unlikely that this dissertation study’s models of student thinking 

summarize all possible ways of thinking students have when participating in exponential 

and logarithmic lessons. Therefore, more research into students’ developing conceptions 

and reasoning abilities when working through lessons on the idea of logarithm (and 

exponential functions) must be conducted. As more research is conducted, we can 

continue to improve the design of logarithmic curriculum and provide professional 

development for teachers so they are better equipped to support students in developing 

productive understandings of the idea of logarithm. It is my hope that curriculum 

developers and researchers will have greater clarity about critical reasoning abilities and 

understandings that students need to acquire about the idea of logarithm. In particular, my 

conceptual analysis, descriptions of my tasks, and my characterization of my subjects’ 
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thinking as they engaged in these tasks should be useful in designing instruction to 

advance students’ meanings, in addition to helping other researchers’ focus their 

investigations. 
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APPENDIX A  

 TEACHING EXPERIMENT TASKS 
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Task 1 
i. Cactus C (A, D) is how 

many times as tall as Cactus 
B? 
 
 
 

ii. Cactus B is how many times as tall as Cactus C (A, D)?  
 
 
 

iii. Given any two cacti, describe how you determine how many times as tall one is 
than the other? 
 
 
 
 
 

iv. Draw Cactus E given Cactus E is 5.5 times as tall as Cactus B. 
 
 

v. Draw Cactus F given Cactus C is 3 times as tall as Cactus F. 
 
 

vi. If Cactus B is 8 inches tall, how tall are Cacti A, C, D and E? 
 
 
 

vii. Cactus H is how many times as tall as Cactus G if Cactus G is 34 inches tall and 
Cactus H is 102 inches tall? 
 
 
 
 

viii.  Cactus I is how many times as tall as Cactus J if Cactus J is x inches tall and Cactus 
I is y inches tall? 
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ix. How would you describe the cactus’ growth in the 
diagram to the right given that the cactus on the left 
grew to be the cactus on the right? 
 
 
 
 
 
 
 

x. If a cactus was 23 inches tall when it was purchased and grew to be 156 inches tall, 
by what factor did the cactus grow? 
 
 
 
 
 
 
 

xi. If a cactus was m inches tall when it was purchased and grew to be k inches tall, by 
what factor did the cactus grow? 

 



 

226 
 

Task 2 
i. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
________________________________________________________________________ 
(A) At some point in time,   (B) After some time, Sparky’s  (C) After some more time,  
Sparky the cactus was          height doubled (becomes 2 times as.  Sparky’s height then quadrupled  
this tall.                         large). Draw the resulting Sparky. (becomes 4 times as large) from 
                                                                                                      point (B). Draw the resulting   
        Sparky.                                                                                                                                                                                                                                                                                                       
 
ii. By what overall factor did Sparky grow from point (A) to point (C)? 
 
 
 
In other words, overall Sparky’s height experienced a _____-tupling. 
 
 
 
iii. If Sparky’s height becomes 3 times as large and then 5 times as large, overall his 

height will experience a ____-tupling. 

iv. If Sparky’s height becomes 34 times as large and then 57 times as large, overall his 

height will experience a ____-tupling. 

v. If Sparky’s height becomes X times as large and then Y times as large, overall his 

height will experience a____-tupling. 
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Task 3 (This task requires the use of the attached Geogebra Applet) 
i. Emily purchased the mystical cactus shown in the video (Geogebra Applet) on 

Sunday, January 1st and named the saguaro Sparky. She decided to record the 
displayed time-lapse video of Sparky’s growth and noticed he was growing in a 
peculiar way. Watch the video and discuss what you observe. 
 
 

ii. Document and observe Sparky’s height every: week (2 weeks, 1/7 week (day), 
1.585 weeks, etc.) What changes? What stays consistent?  
 
 
 
 
 

iii. If Emily’s friend Morgan visited every Tuesday (every other Tuesday, every day, 
every third Tuesday, etc.) to document Sparky’s growth, would she make the same 
claims? 
 
 
 
 
 

iv. If Emily’s friend Kevin visited every Friday (every other Friday, every day, every 
third Friday, etc.) to document Sparky’s growth, would he make the same claims? 
 
 
 
 
 

v. What is the 1-week (2-week, 1/7th-week, 1.585-week, etc.) growth factor? 
 
 
 
 
 
 

vi. What is the 2-tupling (4-tupling, 1.1-tupling, 3-tupling, etc.) period? In other words, 
how long does it take Sparky’s height to become 2 (4, 1.1, 1.585, etc.) times as 
large? 
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Task 4 
Recall the 1-week growth factor is 2, and thus the 2-tupling period is 1 week.  
 

i. By what factor does Sparky grow every two (three, six) weeks?  
 
 
 
 

ii. By what factor does Sparky grow every 52 weeks (1 year)?  
 
 
 
 
 

iii. By what factor does Sparky grow every day (1/7th of a week)?  
 
 
 
 
 

iv. By what factor does Sparky grow every -1 weeks?  
 
 
 
 
 

v. By what factor does Sparky grow if no time has elapsed (0 weeks)?  
 
 
 
 
 

vi. By what factor does Sparky grow by every x weeks?  
 
 
 
 
 

vii. Suppose a different cactus’ height 17-tuples every year. By what factor will this 
cactus grow every week? 
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Task 5 
Recall the 1-week growth factor is 2, and thus the 2-tupling period is 1 week. Also recall 
that initially (week 0) Sparky is 1 foot tall. Suppose that after x weeks, Sparky is y feet 
tall. 
 

i. Fill in the blank:  After x weeks, Sparky’s height is ___ times as large as his height 
at week 0. 
 
 

ii. Use the 1-week growth factor to represent this same growth factor. 
 
 
 
 

iii. Given any number of weeks, x, write an equation that determines the corresponding 
height of Sparky, y.  
 
 
 
 
 
 

iv. Now, suppose initially (week 0) Sparky was 3 feet tall and still doubled in size each 
week. Write an equation that determines y, Sparky’s height in feet, given x, the 
number of weeks since Sparky’s purchase. 
 
 
 
 
 
 
 

v. Suppose a pool is being filled with water so that the volume of water in the pool 1.5-
tuples every hour. At 9am, there were 15 gallons of water in the pool. Write an 
equation that determines the number of gallons of water in the pool, g, in terms of 
the number of hours since 9am, h. 
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Task 6 
 

i. How many 2-tupling periods (weeks) does it take for Sparky’s height to result in a 2-
tupling (4-tupling, 8-tupling)? 
 
 
 
 
 
 
 
 
 
 

ii. How many 2-tupling periods (weeks) does it take for Sparky’s height to result in a 3-
tupling (5-tupling, 7-tupling)? 
 
 
 
 
 
 
 
 
 
 
 

iii. In general,  represents the number of b-tupling periods needed to result in an 
m-tupling. Use this notation to represent your answers to parts (i) and (ii). Verify 
your answers with the applet. 

  

logb (m)
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Task 7 
i. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
________________________________________________________________________ 
(A) At some point in time,   (B) After 1 week, Sparky’s height           (C) After about 1.585 weeks, Sparky’s  
Sparky the cactus was     doubled (2-tupled, became 2 times          height then tripled (3-tupled, became   
this tall.                     as large). Draw the resulting Sparky.      3 times as large). Draw the resulting        
                   Sparky. 
 
 
 
ii. By what factor did Sparky grow from point (A) to point (C)? How long did it take to 
grow by this factor? 
 
 
 
In other words, overall Sparky’s height will experience a _____-tupling in _____ weeks. 
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iii. If Sparky’s height 3-tuples then 5-tuples, overall his height will experience a _____-
tupling. 
 
 
 
 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed to 
result in a 3-tupling, the number of 2-tupling periods (weeks) needed to result in a 5-
tupling, and the number of 2-tupling periods (weeks) needed to result in a 15-tupling. 
Write an equation representing the relationship between these three values. 
 
 
 
 
 
In other words, if it takes _______weeks to 3-tuple and _______weeks to 5-tuple, then it 
will take _______weeks to 15-tuple. 
 
 
 
 
 
iv. If Sparky’s height 34-tuples then 57-tuples, overall his height will experience a 
_____-tupling. 
 
 
 
 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed to 
34-tuple, the number of 2-tupling periods (weeks) needed to 57-tuple, and the number of 
2-tupling periods (weeks) needed to 1938-tuple. Write an equation representing the 
relationship between these three values. 
 
 
 
 
 
In other words, if it takes _______weeks to 34-tuple and _______weeks to 57-tuple, then 
it will take _______weeks to 1938-tuple. 
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v. If Sparky’s height X-tuples then Y-tuples, overall his height will experience a _____-
tupling. 
 
 
 
 
 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed to 
result in a X-tupling, the number of 2-tupling periods (weeks) needed to result in a Y-
tupling, and the number of 2-tupling periods (weeks) needed to result in a XY-tupling. 
Write an equation representing the relationship between these three values. 
 
 
 
 
 
 
In other words, if it takes _______weeks to X-tuple and _______weeks to Y-tuple, then it 
will take _______weeks to XY-tuple. 
 
 
 
 
 
iv. Now, discuss how your equations would change had you measured in days instead of 

weeks. 
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Task 8 
 
i.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
________________________________________________________________________ 
(A) At some point in time,   (B) After some time, Sparky’s        (C) After 1 week, Sparky’s height  
Sparky the cactus was          height 5-tupled in size.               then 2-tupled in size from point  
this tall.                         Draw the resulting Sparky.              (B). Draw the resulting Sparky. 
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ii. By what factor did Sparky grow from point (A) to point (C)? If it took Sparky 
approximately 3.3219 weeks to grow by this factor, how long did it take Sparky to 5-
tuple? 
 
 
 
iii. If it takes Sparky’s height 3.585 weeks to experience a 12-tupling and 2 weeks to 
experience a 4-tupling, how long does it take for Sparky’s height to experience a 3-
tupling? 
 
 
 
 
Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed to 
result in a 12-tupling, the number of 2-tupling periods (weeks) needed to result in a 4-
tupling, and the number of 2-tupling periods (weeks) needed to result in a 3-tupling. 
Write an equation representing the relationship between these three values. 
 
 
 
 
In other words, if it takes _______weeks to 12-tuple and _______weeks to 4-tuple, then it 
will take _______weeks to 3-tuple. 
 
 
 
iv. Describe how you would determine the 17-tupling period given that the 34-tupling 
period is approximately 5.087 weeks 
 
 
 
 
v. Use logarithmic notation to represent the number of 2-tupling periods (weeks) needed 
to result in an X-tupling, the number of 2-tupling periods (weeks) needed to result in a Y-
tupling, and the number of 2-tupling periods (weeks) needed to result in an X/Y-tupling. 
Write an equation representing the relationship between these three values. 
 
 
 
 
In other words, if it takes _______weeks to X-tuple and _______weeks to Y-tuple, then it 
will take _______weeks to X/Y-tuple. 
 
vi. Now, discuss how your equations would change had you measured in days instead of 
weeks.  
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Task 9 
Recall that the 2-tupling period is 1 week. 
 

i. Determine the -tupling period.  
 
 
 
 
 
 
 

ii. The 16-tupling period is how many times as large as the 2-tupling period?  
 
 
 
 
 
 
 

iii. Given that the quadrupling or 4-tupling period is 2 weeks, describe how you would 
determine the -tupling period.  
 
 
 
 
 
 
 

iv. Use logarithmic notation to represent the number of 2-tupling periods (weeks) 
needed to result in an X-tupling and the number of 2-tupling periods (weeks) needed 
to result in an -tupling. Write an equation representing the relationship between 
these two values. 
 
 
 
 
 
 
 

v. Now, discuss how your equations would change had you measured in days instead of 
weeks. 
  

24 = 16

450

Xy
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Task 10 
The 10-tupling period is about 3.3 weeks and the 15-tupling period is about 3.9 weeks. 
 

i. The 15-tupling period is how many times as large as the 10-tupling period? 
 
 
 
 
 

ii. Use logarithmic notation to represent the number of 2-tupling periods (weeks) 
needed to 10-tuple and the number of 2-tupling periods (weeks) needed to 15-tuple. 
Write an equation representing the relationship between these two values. 
 
 
 
 
 

iii. How would your answer to (i) change if the two periods been measured in days? In 
years? How would your answer to (i) remain the same if the two periods been 
measured in days? In years? Explain. 
 
 
 
 
 

iv. Use logarithmic notation to represent the number of 1.104-tupling periods (days) 
needed to 10-tuple and the number of 1.104-tupling periods (days) needed to 15-
tuple. Write an equation representing the relationship between these two values. 
 
 
 
 

v. Compare your answers in (ii) and (iv). 
 
 
 
 

vi. Develop an equation relating , , , and  (for 
) 

  

logb (X) logb (Y ) logc(X) logc(Y )
b,c,X,Y > 0
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Task 11 
 
i. What does y represent in the expression ?  
 
 
 
ii. Represent the number of 2-tupling periods needed to result in a -tupling using 
logarithmic notation. 
 
 
 
 
iii. Represent the number of 2-tupling periods needed to result in a -tupling without 
using logarithmic notation. 
 
 
 
 
iv. Write an equation relating your answers in (ii) and (iii). 
 
 
 
 
v. Simplify  
 
 
 
vi. What does y represent in the expression ? 
 
 
 
 
vii. Represent the number of 2-tupling periods needed to result in an x-tupling using 
logarithmic notation. 
 
 
 
viii. Simplify  
 
 
ix. Simplify  
  

2y

2y

2y

logb (b
x )

2y = x

2log2 (x )

blogb (x )
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Task 12 
 
Recall  represents the number of b-tupling periods needed to result in an x-
tupling. 
 
iii. Describe how  varies as x varies. 

 
 
 
 
 
 

iv. Graph the relationship of  with respect to x. If necessary, create a table of 
values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T/F: Every value of x determines exactly one value of . Explain your answer. 

logb (x)

log2(x)

log2(x)

log2(x)


