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Chapter 9
The Construct of Decentering in Research 
on Mathematics Learning and Teaching

Marilyn P. Carlson, Sinem Bas-Ader, Alan E. O’Bryan, and Abby Rocha

According to Zuberbühler (2018), human communication is a social activity that 
requires the combined effort of at least two participants who consciously and intention-
ally cooperate to construct the meaning of their interaction. Humans utilize multiple 
modalities during communication, including the spoken word, drawings, gestures, 
written symbols, etc. A key feature of intentional communication is that the person act-
ing attempts to draw another’s attention to what they consider relevant entities, both 
real and imagined. The intentionality of the one doing the communication is to convey 
their meanings through speaking and actions. A goal of the one receiving the commu-
nication then is to understand the meanings being conveyed. The mental processes 
involved in understanding the speaking and actions of another person from the perspec-
tive of that person involve imagining how they might have been thinking. Steffe and 
Thompson (2000) classified actions to build a mental model of another’s thinking from 
the perspective of the other as a form of reflection they called decentering.

Characterizing communication involves describing the model each person con-
structs of the other’s thinking and the assumption that the speaker utters phrases that 
are coherent and convey the meaning that the speaker intends. Musgrave and Carlson 
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(2017), in a study of precalculus instructors’ meanings1 for the idea of average rate of 
change, reported that instructors with weak meanings for the idea of average rate of 
change had difficulty expressing a meaning that was coherent and clear enough for 
others to understand. Other studies (Baş-Ader & Carlson, 2022; Carlson & Baş-Ader, 
2019; Rocha, 2021, 2022; Rocha & Carlson, 2020; 2021, 2022 Teuscher et al., 1982) 
report data that illustrate how a teacher’s image of understanding and learning an idea 
influences a teacher’s actions, including how they respond to students’ statements and 
questions. Efforts to study and characterize communication between an instructor and 
a student should then consider how a teacher’s meaning for the idea under discussion 
influences a teacher’s actions. Making sense of a student’s thinking will also require 
that the instructor put their own understanding aside and try to understand how the 
student might be thinking to have said or written what they did. Such an instructor 
would be classified as engaging in decentering or acting in a decentered way. In con-
trast, if an instructor acts as if students’ thinking is identical to their own or discounts 
students’ contributions to interactions, then we say the instructor is acting in a non-
decentered way (Steffe & Thompson, 2000). It is also important to consider if 
researchers studying teaching or student learning are engaging in decentering. Are 
they trying to model their subjects’ thinking, or are they only focused on judging the 
degree to which their subjects’ meanings align with their own?

This chapter traces the historical roots of the construct of decentering. We follow 
by providing an overview of the construct of decentering and its theoretical framing 
in the context of mathematics education research. We then discuss the uses of decen-
tering for studying student thinking and illustrate the symbiotic relationship between 
a researcher’s mathematical meanings for understanding and learning an idea and a 
researcher’s decentering actions. We further describe what our data has revealed 
about the role of decentering and the process by which a teacher might develop ways 
of thinking for teaching an idea. We introduce a framework that illustrates the pro-
cess of acquiring ways of thinking for teaching an idea. We follow by discussing our 
studies of teacher decentering and elaborate five levels of mental actions that provide 
a more fine-grained description of the mental actions teachers exhibited in our inves-
tigations of teachers’ decentering when interacting with one another.

 Theoretical Background, Framing, and Connections

 Decentering’s Origins and Adaptation for Use in Mathematics 
Education Research

In this section, we provide an overview of how the idea of decentering was origi-
nally observed in Piaget’s early work and how the construct was adapted for use in 
mathematics education research.

1 We adopt Thompson et al.’s (2019) use of the word “meaning” in place of “understanding” to 
refer to the “space of implications of an understanding,” including the images and actions that are 
available, and thus influence the possible ways in which the individual might act.
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 The Origins of Decentering in Piaget’s Genetic Epistemology

Piaget introduced the construct of decentering when studying children’s cognitive, 
affective, and social development2 as they progressed through three developmental 
stages. In his theory, decentering referred to a child’s gradual progress away from 
egocentrism and their growing ability to coordinate multiple aspects of an object or 
situation simultaneously (multiple centrations) (Piaget, 1965, 1995). During the sen-
sory-motor stage of development (the period between birth to approximately 2 years), 
the child interacts directly with people and objects that are physically present. The 
child is unable to mentally construct an image of another when they aren’t physically 
present since the child lacks the semiotic function (the ability to create representa-
tions) in this stage. However, mental development during this stage provides a basis 
for the child’s future intellectual development (Piaget, 1965, 1995; Piaget & Inhelder, 
1966, 1973). In particular, through a general decentering process, the child structures 
his universe during this stage. As Piaget and Inhelder (1966, 1973) explained:

In the course of the first eighteen months, however, there occurs a kind of Copernican revo-
lution, or, more simply, a kind of general decentering process whereby the child eventually 
comes to regard himself as an object among others in a universe that is made up of perma-
nent objects (that is, structured in a spatio-temporal manner) and in which there is at work 
a causality that is both localized in space and objectified in things. (p. 13)

As children transition to the pre-operational stage (approximately ages 2 to 7 years), 
they can conceive of objects outside of their immediate experience (von Glasersfeld, 
1995). Piaget’s experiments (e.g., viewing a mountain from another position) fur-
ther revealed that it is during the pre-operational stage that children develop the 
semiotic function and thus begin to construct mental representations or representa-
tional thought and progress to using symbols and signs to evoke objects when they 
are not physically present (Piaget & Inhelder, 1966, 1973). Prior to their transition 
to a decentered state, children are egocentric (they struggle to distinguish others’ 
viewpoints, perspectives, and perceptions from their own – their world is strictly 
about themselves), their reasoning is dominated by figurative, perceptual features of 
situations (e.g., they do not understand how properties of an object like its volume 
might be preserved even if its appearance changes), and they tend to focus only on 
one aspect of an object or situation at a time (Piaget, 1965, 1995; Piaget & Inhelder, 
1966, 1973).

As children decenter, they begin to understand and appreciate that others per-
ceive the world in unique ways and have independent feelings, motivations, and 
opinions. It is through decentration that the child introduces reciprocity among the 
diversity of points of view along with differentiating among them. Decentration also 
allows for the ability to consider their actions as reversible and to understand that 
some properties of objects are conserved under transformations. Children’s acquisi-
tion of notions of conservation exemplifies this sort of constructive processes 

2 In Piaget’s theory of constructivism, cognitive, affective, and social development of a cognizing 
subject are inseparable (Piaget & Inhelder, 1966, 1973).
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(Ginsburg & Opper, 1988; Piaget, 1945, 1952). In an experiment about the conser-
vation of continuous quantity, the liquid in container A is poured into a narrower 
container B or wider container C (Piaget & Inhelder, 1966, 1973). Younger children 
describe the volume of liquid in container A increasing when poured into container 
B or decreasing when poured into container C. This is because they focus only on 
the figurative image of the liquid’s height in each container. They do not conceptual-
ize their actions of pouring as transformations of the state of the liquid nor as an 
action that could be reversed (Ginsburg & Opper, 1988; Piaget & Inhelder, 1966, 
1973). Older children, however, understand that when the liquid is poured from 
container A into container B it could simply be poured back into container A and 
that these actions do not alter the liquid’s volume. The child decenters these trans-
formations from the child’s actions, and thus the child is no longer constrained by 
pre-operational thought nor dependent on specific figurative representations (Piaget 
& Inhelder, 1966, 1973).

 Adapting Decentering for Use in Mathematics Education Research

Many researchers (e.g., Baş-Ader & Carlson, 2022; Carlson et al., 2007; Steffe & 
Thompson, 2000; Thompson, 2013), including us, have adopted the term “decenter-
ing” as a construct for studying mathematics teaching and for researching student 
learning that extends its meaning as “a shift away from egocentrism” and “the 
increasing ability to coordinate centrations in one’s reasoning” that occurs during 
childhood development. Earlier in the paper, we defined “decentering” as attempt-
ing to understand another’s actions from the perspective of the other by imagining 
how the other person might have been thinking. On the other hand, acting in a non- 
decentered way is characterized by imputing one’s own reasoning, goals, beliefs, 
worldview, or understandings onto another person to explain their actions.

Thus, it is useful to understand our use of “decentering” to be synonymous with 
the notion of modeling another person’s thinking in such a way as to hypothesize 
meanings, beliefs, goals, and so on that would logically result in that person’s 
observable actions even if (or especially if) those meanings, beliefs, goals, and so on 
differ from our own. Teachers decenter when they work to understand a student’s 
meaning and reflect on what meaning a student constructed and then leverage their 
image of a student’s meaning to inform their subsequent instructional actions. A 
researcher’s decentering actions are similar, although the researcher typically has 
more robust schemes for the idea under investigation and thus is better equipped to 
understand and characterize a student’s thinking. They are also typically more sin-
gularly focused on building a model of a student’s thinking and/or testing a hypoth-
esis for advancing a student’s meaning for an idea that is a focus of a study. We will 
continue to clarify the uses of decentering by providing concrete examples of how 
teachers and researchers have used decentering in their work.

M. P. Carlson et al.
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 Connections Between Decentering and Other Theoretical 
Constructs Used in Mathematics Education

In this section, we describe the theoretical foundations and connections between the 
decentering construct as we define it and Piaget’s constructs of reflecting and 
reflected abstraction, first- and second-order models for individuals’ reasoning, and 
mathematical knowledge for teaching (MKT).

 Reflecting and Reflected Abstraction and Their Connection to Decentering 
in the Context of Teaching

According to von Glasersfeld (1991), reflection “allows us to step out of the stream 
of direct experience, to re-present a chunk of it, and to look at it as though it were 
direct experience while remaining aware of the fact that it is not” (p. 90). It follows 
from this conceptualization that the reflection process has two main components: 
representing and abstraction. The mental act of considering a chunk of experience 
and isolating it from what came before and what follows is a simple kind of abstrac-
tion, and representing is the mental act of treating the abstraction as an object in and 
of itself. Representation of a previous experience then refers to the mental actions 
that reconstruct the experience, thus making it conscious for the individual (von 
Glasersfeld, 1991).

Piaget adopted and extended the idea of reflection in his theory of abstraction 
(Simon et al., 2004; Tallman, 2021; von Glasersfeld, 1995) Among the four kinds of 
abstraction (von Glasersfeld, 1991), reflecting and reflected abstraction are particu-
larly relevant to decentering.3 Reflecting abstraction is the process that “involves an 
individual’s reconstruction on a higher cognitive level of the coordination of actions 
from a lower level” (Tallman, 2021, Reflecting Abstraction section, para. 12), such as 
the reconstruction of physical actions at the level of mental representations of those 
actions. This reconstruction requires isolating those actions from their effects so that 
the actions can be generalized, and this process is the source for the construction of 
new knowledge or conceptions (Simon et al., 2004; Tallman, 2018). That is, the result 
of reflecting abstraction is a scheme of meanings.4 It is worth noting that an individual 
can have a scheme of meanings but lacks conscious awareness of the scheme to the 
extent that they are unable to explain it or discuss it in general terms or consciously 
manipulate symbolic representations of the scheme’s actions without needing to 

3 See Ellis, Lockwood, and Paoletti (Chap. 6) and Tallman and O’Bryan (Chap. 8) for a more 
detailed discussion of reflecting and reflected abstraction.
4 We often find it useful to remind readers that all types of abstractions in Piaget’s theory have the 
ability to “go wrong.” That is, depending on what an individual attends to and takes away from 
experiences dictates what becomes abstracted, and it is quite common for someone to develop a 
scheme that, from an observer’s perspective, contains faulty reasoning and incorrect information 
or is incomplete.
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reimagine the coordinated actions they represent (Piaget, 1977, 2001). Conscious 
awareness of one’s own reasoning comes with reflected abstraction. Tallman and 
O’Bryan (Chap. 8) describe reflected abstraction as follows:

Thus, reflected abstractions enable an individual to explicitly formulate the results of prior 
reflecting abstractions. Reflected abstraction, then, describes a scheme constructed at the 
reflected level of thought through reflection on the results of prior reflecting abstractions. 
These reflected schemes possess an essential characteristic (cognizance of projected action 
coordinations, decontextualized and applicable to a generalized class of objects) that 
endows the knower with the capacity to explicitly formulate meanings and strategically 
apply them in a range of novel contexts. Indeed, Piaget (1977, 2001) most often associated 
reflected abstraction with behavioral expressions of such capacities. For example, in 
describing reflected abstraction as a “detailed description of characteristic actions” (p. 167), 
Piaget associated reflected schemes with the aptitude to explicitly formulate meanings 
entailed and ways of reasoning supported by the scheme. (p. 249)

Reflecting and reflected abstraction are thus critical constructs in decentering in 
mathematics education research and with respect to decentering during teaching. It 
is first necessary that an individual has constructed schemes for the mathematical 
ideas at hand via reflecting abstraction. The individual then must have constructed a 
reflected scheme as a reorganization of previously constructed schemes so that their 
mathematical meanings for the ideas are coherent, organized, and refined and have 
been brought into the individual’s conscious awareness. This involves reflecting on 
one’s own reasoning, comparing one’s reasoning in one context to the reasoning in 
another context, considering additional implications of that reasoning, etc. The pro-
cess of comparing the characteristics of one’s reasoning to the characteristics of 
another’s reasoning necessarily requires that the individual has developed or is 
developing conscious awareness of their own reasoning [i.e., requires reflected 
abstraction].

 First- and Second-Order Models and Their Connection to Decentering

Thompson (2002) summarized the important distinctions between first- and second- 
order observers and between first- and second-order models initially proposed by 
Steffe et al. (2009). To first understand these distinctions, Thompson emphasizes 
that “any description of affairs must be done at a level of monitoring that is above 
what is being described” (p. 303). For example, a researcher describing children’s 
thinking within a research study is “not just acting from an image of how students 
think. She is monitoring how she understands their thinking, and she has connected 
it with ways of thinking about [related mathematical ideas]” (p. 303). Researchers 
and teachers working with students could be actors in the situation, or they could be 
acting as observers even while being part of the interaction:

If [researchers/teachers] do not reflect on aspects of an interaction that are contributed by 
students, if they are fused with the situation as they have constituted it, then they are actors 
in the interaction, not observers. To be an observer of another while involved in interaction, 

M. P. Carlson et al.
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one necessarily moves to a level of reflection. When this happens, it adds a dimension to the 
social interaction — the observer is now acting purposefully and thoughtfully, using the 
social interaction instrumentally. (Thompson, 2002, p. 303)

Assuming a researcher or teacher is acting as an observer (i.e., they are reflecting on 
students’ contributions), they can be acting as first- or second-order observers. First- 
order observers acknowledge that students can have different reasoning from the 
observer and are oriented to develop an image of that reasoning. Second-order 
observers are additionally oriented to consider the implications of the student’s rea-
soning and to consider if other ways of reasoning might be more beneficial. Put 
another way, “first-order observers address what someone understands, while 
second- order observers address what they understand about what the other person 
could understand” (Thompson, 2002, p. 303).

First-order models are “models the observed subject constructs to order, compre-
hend, and control his or her  experience (i.e., the subject’s 'knowledge')” (Steffe 
et al., 2009, p. xvi). That is, first-order models can be thought of as someone’s per-
sonal understanding of a mathematical idea, problem solution, scenario, etc. It 
describes how that person thinks about the mathematics at hand. Second-order mod-
els are “models observers may construct of the subject’s knowledge in order to 
explain their observations (i.e., their experience) of the subject’s states and activi-
ties” (Steffe et al., 2009, p. xvi). In constructing a second-order model, a teacher or 
researcher “[puts themself] into the position of the student and attempts to examine 
the operations that [they] (the researcher) would need and the constraints [they] 
would have to operate under in order to (logically) behave as the student did” 
(Thompson, 1988, p. 159). The result of this construction is the researcher’s/teach-
er’s second-order model of the subject’s thinking that explains the researcher’s/
teacher’s observations of the student’s states and activities.

These distinctions are important for understanding whether teachers’ actions 
indicate them operating in decentered or non-decentered ways and, if evidence of 
decentering exists, how to characterize the nature of the decentering and its possi-
ble implications for supporting students’ learning. Teachers acting in non- 
decentered ways (i.e., operating solely as actors in a situation) are not acting 
reflectively and rely solely on their first-order models (their meanings) to guide 
pedagogical decisions (Teuscher et al., 1982). “For instance, a teacher who plans a 
lesson based on how she learned an idea is using her first-order model to plan the 
lesson” (Baş-Ader & Carlson, 2022, p. 101). It is also possible for researchers to 
judge data based on their first-order models (their meanings for ideas and methods 
for solving problems). For example, Lobato and her colleagues (Lobato, 2006, 
2008, 2012, 2012; Lobato et al., 2017; Lobato & Siebert, 2002) point out that tra-
ditional learning transfer studies often fail to detect transfer precisely because they 
rely on students seeing the same connections between problem situations that the 
researchers see, while variations in students’ prior experiences and how they con-
ceptualize what they see get overlooked. Teachers or researchers operating from 

9 The Construct of Decentering in Research on Mathematics Learning and Teaching
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first-order models are constrained to using their own thinking and meanings to 
make sense of students’ activities.5

On the other hand, decentering requires that the individual is acting reflectively 
(i.e., acting as a first- or second-order observer in a situation and considering stu-
dents’ contributions to the interaction). Decentering actions are then driven by the 
propensity to construct second-order models of students’ thinking and, ideally, to 
use these models to inform a teacher’s or researcher’s actions. The nature of the 
decentering actions and their usefulness, however, depend on whether the teacher/
researcher positions himself as a first- or second-order observer.

As necessary as they are, second-order models of knowing made by a first-order 
observer provide only weak guidance to a teacher, developer, or researcher. The only 
thing they can draw from them is that what students end up knowing comes out of the 
sense they make of teaching and bears no necessary relationship with what the teacher, 
developer, or researcher intended. Second-order models of knowing made by a sec-
ond-order observer, however, can provide strong guidance for the teacher, developer, 
or researcher who has developed a vocabulary and system of constructs to describe 
students’ conceptual schemes together with transformations, reorganization, or other 
modifications in them (Thompson, 2002, p. 304).

A teacher or researcher constructs a second-order model through decentering 
actions if they wonder, “How might the student be thinking to act as they did?” 
which necessarily involves interpreting a student’s actions through a model of the 
student rather than their (the teacher’s/researcher’s) own cognitive schemes. 
However, the ultimate usefulness of this model depends on the degree to which the 
observer possesses a rich, coherent system of meanings and ways of thinking such 
that the teacher or researcher can reflect not just on how a student understands an 
idea but also on the implications and usefulness of that understanding for the stu-
dent’s future mathematical experiences. In other words, the nature of the teacher’s/
researcher’s first-order model matters in providing capacity for constructing second- 
order models of others’ meanings and considering the implications of those mean-
ings. We will demonstrate examples of this in later sections.

Later in this chapter, we discuss a framework developed by Baş-Ader and Carlson 
(2022) that characterizes five levels of decentering actions exhibited by teachers 
when interacting with students when teaching. We hypothesize and describe con-
nections between these decentering actions and teachers’ mathematical meanings 
for teaching (MMT), their level of awareness of their own mathematical meanings, 
and how they position themselves as observers while interacting with their students.

5 We want to emphasize that we do not intend to convey that first-order models are not useful or 
important for decentering. In later sections we discuss the nature of a teacher’s/researcher’s first-
order models that are necessary for and support constructing second-order models. The teacher’s/
researcher’s first-order model is used to comprehend and control their experiences (including 
experiences of interacting with students or research subjects). A person cannot abandon their first-
order model because it enables and constrains what they can observe, notice, and reflect on when 
engaging with students or research subjects. We however caution assuming that one’s first-order 
model characterizes how others think.

M. P. Carlson et al.
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 Mathematical Knowledge for Teaching and Its Connection to Decentering

After having introduced the idea of teachers acting as first- or second-order observ-
ers in an interaction and the importance of constructing second-order models of 
students’ thinking, it is natural to wonder what enables researchers and teachers to 
construct these models. In this section, we discuss the kind of specialized knowl-
edge necessary for constructing second-order models of students’ thinking and 
positioning oneself as a second-order observer while doing so.

Key Developmental Understanding (KDU) and Pedagogical Understanding

Silverman and Thompson (2008) “propose a theoretical framework that extends a 
constructivist perspective to include the development of MKT [Mathematical 
Knowledge for Teaching]” to address the need for a theoretical foundation for 
studying teaching and teacher development  (p. 501). Silverman and Thompson 
argue that content knowledge alone is insufficient for ensuring high-quality teach-
ing. Instead, a teacher’s MKT is based first in what Simon (2006) called a key devel-
opment understanding (KDU) or “a way to think about understandings that are 
powerful springboards for learning, and hence are useful goals of mathematics 
instruction” (Silverman & Thompson, 2008, p. 502). Developing a KDU involves 
reflective abstraction whereby new knowledge is constructed and connected to 
existing knowledge through learning experiences designed to promote those under-
standings (perhaps in teacher preparation courses or professional development set-
tings). Having a KDU is not enough, however. MKT develops when a teacher 
conceptualizes the pedagogical power of their KDU.

As a teacher thinks about the content to be taught, she envisions a student (other 
than the teacher) working through the material, easing through some problems and 
stumbling over others. The entire time, the teacher must ask herself “What must a 
student understand to create the understanding that I envision?” and “What kinds of 
conversations might position one to develop such understandings?” The prospective 
teacher must put herself in the place of a student and attempt to examine the opera-
tions that a student would need and the constraints the student would have to operate 
under in order to (logically) behave as the prospective teacher wishes a student to 
do. This is reflective abstraction [in particular, reflected abstraction].

A KDU might be viewed as a pedagogical action, where action is used in the 
Piagetian sense. Teachers are engaged in pedagogical actions when they wonder, 
“What might I do to help students think like what I have in mind?” Their question 
is posed in a domain-specific manner, such as “How might I help my students think 
about logarithms as an accelerated condensing and recoding of the number line?” 
The development of MKT involves separating one’s own understanding from the 
hypothetical understanding of the learner (Steffe, 1983). When a person views a 
pedagogical action as if she is not an actor in the situation (even though she is), and 
when the person can separate herself from the action (and thereby reflect on it), the 

9 The Construct of Decentering in Research on Mathematics Learning and Teaching
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pedagogical action has been transformed into a pedagogical understanding 
(Silverman & Thompson, 2008, p. 508).

There are a few important points of emphasis from this passage connecting 
MKT, reflective abstraction, and decentering. Silverman and Thompson 
(2008) describe how a KDU with pedagogical potential gains pedagogical power 
when a teacher reflects on their students’ current meanings while hypothesizing 
activities and interventions they conjecture for advancing students’ meanings. A 
teacher is decentering as they “separate one’s own understanding from the hypo-
thetical understanding of the learner,” but it differs from decentering actions that 
involve a teacher constructing a second-order model of a student’s thinking while 
directly interacting with a student.6 A teacher’s images of students’ thinking relative 
to an idea emerge from one-on-one interactions with individual students. As a 
teacher (or researcher) engages with different students, she might emerge with 
images of multiple hypothetical students. Thus, when we talk about decentering in 
this paper, we are not talking solely about decentering actions that one engages in 
when interacting directly with another. Decentering can occur in all phases of plan-
ning for, engaging in, and reflecting on the result of instruction (or research) with 
students. Silverman and Thompson also emphasize that the development of MKT 
involves teachers engaging in reflecting abstraction on their KDU (the product of 
which is a reflected abstraction or a reflected scheme) and that this process is moti-
vated by attempts at decentering.

 Epistemic Students Emerge from Conceptual Analysis 
and Second-Order Models

Conceptual analysis, described by von Glasersfeld (1991) and elaborated by Steffe 
(1983) and Thompson (2002, 2011), addresses teachers’/researchers’ “need to 
describe what students might understand when they know a particular idea in vari-
ous ways” (Thompson, 2011, p. 43). The goal of conceptual analysis is to hypoth-
esize the mental operations a person engages in as they reason about a situation 
based on their personal image of that situation. von Glasersfeld used conceptual 
analysis both to generate models of how others understand certain ideas and to gen-
erate meanings for ideas that would be beneficial for students in reasoning about 
those ideas in powerful ways (and why those meanings are especially beneficial). 
Thompson (2011) writes that:

Finally, as illustrated in this papers [sic] first part, conceptual analysis can be employed to 
describe ways of understanding ideas that have the potential of becoming goals of instruc-
tion or of being guides for curricular development. It is in this regard that conceptual 

6 Note, however, that images of these hypothetical students are often formed from past experiences 
working with actual students in addition to engaging in conceptual analysis. We will discuss these 
connections in the next section.
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 analysis provides a method by which to construct and test a foundation of mathematics 
education in the same way that people created a foundation of mathematics.

 In summary, conceptual analysis can be used in four ways:

(1) in building models of what students actually know at some specific time and what they 
comprehend in specific situations,

(2) in describing ways of knowing that might be propitious for students’ mathematical 
learning, and

(3) in describing ways of knowing that might be deleterious to students’ understanding of 
important ideas and in describing ways of knowing that might be problematic in specific 
situations.

(4) in analyzing the coherence, or fit, of various ways of understanding a body of ideas. 
Each is described in terms of their meanings, and their meanings can then be inspected 
in regard to their mutual compatibility and mutual support.

I find that conceptual analysis, as exemplified here and practiced by Glasersfeld, 
provides mathematics educators with an extremely powerful tool. It orients us to 
providing imagistically-grounded descriptions of mathematical cognition that cap-
ture the dynamic aspects of knowing and comprehending without committing us to 
the epistemological quagmire that comes with low-level information processing 
models of cognition (Cobb, 1987; Thompson, 1990). Conceptual analysis provides 
a technique for making concrete examples, potentially understandable by teachers, 
of the learning trajectories that Simon (1995) calls for in his re-conceptualization of 
teaching from a constructivist perspective and which Cobb and his colleagues 
employ in their studies of emerging classroom mathematical practices (Cobb,2000; 
Gravemeijer, 1994; Gravemeijer et al., 2014). In addition, when conceptual analysis 
is employed by a teacher who is skilled at it, we obtain important examples of how 
mathematically substantive, conceptually-grounded conversations can be held with 
students (Thompson, 2011, p. 44–45)

We include this entire quote because Thompson’s description of conceptual anal-
ysis and its uses captures its relationship with decentering. Conceptual analysis is 
the mechanism by which teachers/researchers engage in aspects of decentering 
(even when no students are present) and involves the same mental activity involved 
in decentering in the moment of interaction with students/subjects.

A primary goal of mathematics education researchers employing a radical con-
structivist’s7 theoretical perspective is to model students’ thinking, usually about 
particular mathematical ideas. To do so, these researchers often go through a multi- 
step process. The early phases involve synthesizing related literature on previous 
studies, reflecting on past work with students, and performing aspects of conceptual 
analysis about the idea (focusing on uses 2, 3, and 4 from Thompson’s (2011) list). 
What emerge from this work are generalized models of students’ thinking called 
epistemic students (Thompson, 2002).8 An epistemic student is a description of a 

7 Mathematics educators leveraging radical constructivism as a background theory take seriously 
that (1) students’ mathematical reality is distinct from the researchers’ and (2) researchers have no 
direct access to students’ mathematical reality.
8 Thompson (2002, 2008) discussed the notion of an epistemic person (student) as a way of think-
ing about a particular idea. It is built from Piaget’s (1981,1987) notion of an epistemic subject. 
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way of thinking about a particular idea that we could hypothetically attribute to a 
person in the way we might say, “Imagine that a student thinks about angle measure 
as reporting the area of a region bounded by an angle and a circle centered at the 
angle’s vertex.” The researcher constructs images of multiple epistemic students, 
considers the implications of each way of thinking about the idea and what observ-
able behaviors might indicate that someone possesses a similar way of thinking 
about the idea, and, depending on the research study, may go on to consider how to 
scaffold learning experiences that support students in having the opportunity to con-
struct a particular way of thinking about the idea the researcher believes to be pow-
erful. Engaging in this activity involves a type of decentering activity. The epistemic 
students generated depend to a large degree on the researcher’s own first-order 
model of the mathematics at hand and represent the researcher’s initial attempts to 
generate models of others’ thinking related to the idea.

Researchers then typically engage in work with actual students, such as conduct-
ing clinical interviews (Clement, 2000) or teaching experiments (Steffe & 
Thompson, 2000). While interacting with subjects in these settings, the researcher’s 
goal is to generate conjectures about subjects’ observable actions (utterances, draw-
ings, gestures, etc.) and the nature of the subjects’ meanings that might explain 
these actions. These second-order models that emerge are the result of the research-
er’s decentering actions and inform subsequent conjectures of the student’s think-
ing. As researchers repeatedly decenter when interacting with students in the context 
of their learning or using an idea (e.g., average rate of change, exponential growth), 
the researcher’s models of students’ thinking become more viable, and their images 
of students’ ways of thinking (epistemic students) become more refined. It is 
through the successive refinements of a theoretical model that it becomes more 
stable, although, as von Glasersfeld and Steffe (1991) have noted, we cannot arrive 
at absolute certainties, and “The most one can hope for is that the model fits what-
ever observations one has made and, more importantly, that it remains viable in the 
face of new observations” (p. 98).

It is worth noting that a teacher’s decentering actions can similarly lead to the 
teacher constructing images of epistemic students. In Silverman and Thompson’s 
(2008) description of how a teacher’s KDU gains pedagogical power, they are 
describing the same mental actions involved in constructing images of epistemic 
students. These images provide the foundation for instructional design and guidance 
for leading classroom conversations. When engaged in instruction, the teacher’s 
epistemic students help guide the teacher’s decision-making (such as what ques-
tions to ask or how to follow up on student errors). However, if teachers are acting 
as first- or second-order observers while engaged in teaching, it is likely that they 
will routinely recognize novel student reasoning or encounter unexpected difficulty 
in supporting students’ learning of some mathematical idea. The second-order 
model a teacher constructs when teaching and reflecting on specific classroom 

Piaget distinguished three constructs: the individual (an actual person), the psychological subject 
(an abstract person described in terms of psychological traits), and the epistemic subject (a coher-
ent collection of ways of knowing).
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interactions can lead to the teacher refining and adapting their images of students’ 
thinking relative to an idea and when interacting with specific tasks related to that 
idea. These reflections may lead to the teacher adjusting her teaching practices and 
lessons according to these updated images of students’ ways of thinking about an 
idea. We further claim that a teacher’s first-order model of the mathematical idea 
under consideration/discussion influences the nature of the teacher’s image, the use-
fulness of those images, and their ability to notice and reflect on elements of stu-
dent’s reasoning that can feed into the kinds of refinements in their teaching practice 
we have described. We will return to these ideas later in this chapter and propose a 
framework that describes the uses of decentering during teaching and its role in a 
teacher’s development of mathematical meanings for teaching and mathematical 
ways of thinking for teaching specific ideas.

 Clinical Interview Methodology

Mathematics education researchers have devised data collection methods for gener-
ating artifacts to inform their construction of a model of a student’s thinking. One 
data collection method is clinical interviews, first used by Piaget in his early experi-
ments investigating children’s cognitive development. This method was later 
expanded to include open-ended interviews and think-aloud protocols 
(Clement, 2000).

 The Role of Decentering in Clinical Interview Data Collection

The over-arching goal of a clinical interview is to reveal information about a sub-
ject’s mental processes “at the level of a [subject’s] authentic ideas and meanings” 
(Clement, 2000, p. 547). However, as researchers’ knowledge base and inquiries 
have evolved, so have the field’s data collection methods. As one example, Clement 
(2000) formalized two general categories of clinical interviews, generative and con-
vergent. The goal of a generative clinical interview is to produce theoretical descrip-
tions of mental structures and processes that reveal nuanced and diverse ways of 
thinking. Researchers in mathematics education commonly use generative clinical 
interviews in the early phases of exploring student thinking relative to a specific 
mathematical idea (e.g., rate of change, angle measure, function composition, accu-
mulation). Their analysis of the clinical interview data generates a conjectured 
description of a subject’s thinking (a second-order model developed via conceptual 
analysis). A researcher’s coding activity involves their use of (or development of) 
theoretical constructs to label the subject’s utterances, explanations, and actions as 
a basis for their claims about what the student might have been thinking. Convergent 
clinical interviews seek to apply the theoretical models developed from generative 
clinical interviews to code new or larger data sets. While the goal in convergent 
clinical interview studies is to have codes developed that allow high levels of 
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agreement across independent coders, decentering does come into play when cer-
tain subjects or data sets turn out to be difficult to code reliably. Such instances 
indicate a need to revisit or conduct new generative studies to update models of 
student thinking (which necessarily involves conceptual analysis and decentering).

Clement’s (2000) discussion of clinical interviews includes detailed descriptions 
of the various types of clinical interviews and their purposes. He also notes that the 
theoretical descriptions generated by a researcher’s clinical interview data analysis 
are influenced by the researcher’s current conceptions and theories. However, 
descriptions of methods for collecting clinical interview data rarely discuss how a 
researcher determines the interview task(s) or develops the line of questioning used 
during data collection and, more generally, how a researcher’s theoretical perspec-
tive on what is entailed in learning an idea impacts the model that the researcher 
constructs of the subject’s thinking. This observation led us to ponder the under-
standings and thinking that led to Piaget’s task design and his line of probing that 
produced novel insights into children’s thinking. More generally, we invite the 
reader to consider the mechanisms for building a model of another’s thinking – what 
is the nature of the researcher’s meanings and ways of thinking relative to the idea 
being studied that enables a researcher to notice and model important aspects of a 
research subject’s thinking? What thinking is involved in putting aside one’s own 
way of thinking about an idea and viewing a student’s actions in responding to a 
problem from the student’s perspective (decentering)?

 Examples of Decentering in Mathematics Education Research

In this section, we provide two examples of how researchers’ decentering actions 
and engaging in conceptual analysis influenced their work, including what they 
noticed, what they reported, and the connection between their first-order knowledge 
and the second-order models they constructed of subjects’ thinking. As we discuss 
these examples, we illustrate connections among and uses of the various theoretical 
constructs already discussed.

 Example 1: How a Researcher’s Meaning for Rate of Change 
Informed Data Collection and Data Analysis

Thompson (2016) describes his observation of a ninth-grade teacher as she is teach-
ing a lesson on the point-slope and point-point formulas for linear functions.9 
Thompson’s characterization of the teacher’s interactions reveals the role of his 

9 Thompson conveyed that the teacher had attended a professional development workshop he led, 
and the teacher had subsequently decided to use a task similar to one that he had used during the 
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meaning for constant rate of change and his use of decentering in describing the 
teacher’s actions.

Thompson (2013) reports that the teacher first plotted the two points (3, 1) and 
(7, 4) on a coordinate axis. This action was followed by the teacher sketching line 
segments to illustrate her claim that “the function goes over 4 and up 3.” Thompson 
further conveyed that the teacher attempted to locate the y-intercept of the line by 
moving to the left four units from the point (3, 1). He then noted that while the 
teacher was constructing the line (see Fig.  9.1), she stopped mid-sentence after 
uttering the phrase, “If we go 4 to the left….” After a long pause, the teacher stopped 
her lesson and proceeded to discuss the homework assignment for the next day.

Thompson (2013) provided his fine-grained description of the teacher’s actions 
(including utterances and drawings) used to characterize her thinking. According to 
Thompson:

She saw the change in x as a chunk. This was unproblematic in the case of one point. 
However, her chunk in this problem did not place her at x = 0 as she wished. Second, her 
meaning for slope was “rise over run”, where rise and run were both chunks. Third, her 
computation of slope, not evident in this excerpt but made clear later, was of a procedure 
that produced a number that is an index of a line’s “slantiness”. Division did not produce a 
quotient that has the meaning that the dividend is so many times as large as the divisor—3/4 
as a slope was not a number that gave a rate of change. It gave a “slantiness”. Fourth, her 
meaning for rate of change entailed neither smooth variation nor proportionality. It was 
more akin to her meaning for slope—two things changing in chunks. These meanings not 

workshop (P. Thompson, personal communication). She decided to use the task the day he was 
visiting their school so he could observe her lesson. Note that Thompson (2016) explains that his 
intention with this task in the workshop was for teachers to determine the function’s constant rate 
of change and use this to coordinate proportional changes in x and y to determine the function’s 
vertical intercept. Such a solution method requires multiplicative reasoning, which contrasts with 
the additive “rise over run” reasoning many teachers were employing.

Fig. 9.1 An example provided by Thompson (2016, p. 84)
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only failed to provide Sandra a connection between her current setting (two points) and 
prior method, they led her down the dead-end path she followed. (Thompson, 2013, 
pp. 81–82)

We claim that Thompson’s (2013) ability to characterize the teacher’s thinking 
(construct the second-order model he described) was based on both the actions 
and utterances that Thompson observed and his interpretation of these actions, 
and both of these were influenced by his first-order model of what is entailed in 
understanding and learning the idea of constant rate of change (including ideas 
about variation, proportionality, slope and rate of change, the meaning of division, 
and so on).10 Furthermore, it was similar to second-order models of teachers’ 
thinking in the professional development workshop that prompted him to create 
the task in the first place (P.  Thompson, personal communication). Thompson 
described that many of the teachers’ images of slope entailed an amount of rise 
and an amount of run, where rise and run represented two things changing in 
chunks, and they were therefore relying on additive reasoning to think about 
slope. Thus, Thompson deliberately created a scenario such that teachers attempt-
ing to leverage this image would encounter difficulties completing the task. This 
suggests that Thompson was alert to the limitations of this way of thinking and 
was intentional in designing the task to reveal and support students and teachers 
in confronting this conception of slope.

Thompson (2013) went on to describe a way of thinking about constant rate of 
change that would have been more useful for Sandra: “Had Sandra reasoned pro-
portionally and with smooth continuous variation, she might have said ‘… over 
3/4 of 4 and up 3/4 of 3’. That would have given her the graph’s y-intercept” 
(p. 81). Note that Thompson’s analysis involves multiple aspects of conceptual 
analysis (building models of a subject’s thinking and describing ways of knowing 
a mathematical idea that might be either powerful or problematic) and indicates 
that he positioned himself as a second-order observer while constructing his sec-
ond-order model of the teacher’s thinking (focused not just on how her thinking 
was different from his but also the implications of that thinking). His suggestion 
of a more powerful way of thinking about constant rate of change was based on 
the thinking he considered at the time to be productive, including an image of the 
two quantities varying together smoothly and continuously and the recognition of 
a proportional relationship between the changes in the two quantities and all that 
proportionality entails. Finally, we point out that Thompson’s first-order model of 

10 We don’t have the space to fully unpack all that Thompson and others have written about stu-
dents’ and teachers’ meaning for these ideas (e.g., Byerley et al., 2012; Castillo-Garsow, 2010; 
Johnson, 2015, 2018; Thompson, 1994b,  1994, 2000, 2011; Thompson & Carlson, 2014; 
Thompson & Thompson, 2007, 1994). However, Thompson’s interpretations of the teacher’s 
actions revealed aspects of his image (at the time of reporting) of the ways of thinking that he 
deemed to be most productive (and less productive). For example, his conceptualization of the dif-
ference between thinking about variations happening in chunks compared to smooth transitions 
where the varying quantities takes on all possible values within an interval oriented his attention to 
how the teacher was conceptualizing variation and the implications of her “chunky thinking.”
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constant rate of change influenced the data he presented to make arguments in the 
paper about the importance of MKT for creating mathematical experiences where 
students have a chance to learn mathematical ideas that are powerful and will 
serve them well in the future.We invite the reader to consider questions such as the 
following. What led to Thompson’s (2013) construction of the task and character-
ization of the teacher’s thinking? What meaning of constant rate of change did 
Thompson deem to be productive? In particular, what was Thompson’s first-order 
knowledge of constant rate of change that resulted in him being alert to the 
“chunky thinking” that he observed? How did Thompson’s first-order knowledge 
influence the second-order model he built of the teacher’s thinking? We further 
invite the reader to reflect on what guides your own task design and data collec-
tion. How does your first-order model for understanding and learning an idea 
influence what questions you ask, what you notice, and how you interpret and 
report your data?

 Example 2: Researcher Decentering in a Teaching Experiment 
on Logarithms

In this section, we provide an example of researchers’ iterative efforts to understand 
and characterize what is entailed in understanding the idea of logarithm, and we 
highlight how the products of the researchers’ decentering actions advanced their 
first-order models of what is entailed in understanding and learning the idea of loga-
rithm. We also illustrate how the researchers’ first-order models for teaching the 
idea of logarithm evolved during, and as a result of, their decentering actions. Their 
conceptual analysis included fine-grained descriptions of students’ thinking relative 
to understanding the idea of logarithm and then shaped the researchers’ hypotheti-
cal learning trajectory and subsequent teaching experiment design and data analy-
sis. Their first-order models (including images of students’ thinking) also influenced 
their subsequent decentering actions, including the questions they posed and the 
models they built. We begin by discussing the purpose and design of teaching exper-
iments in cognitively focused mathematics education research.

 Iterative Models of a Student’s Thinking Informs Teaching 
Experiment Design

A teaching experiment involves a series of teaching episodes that comprise a teach-
ing agent, one or more students, a witness, and a recording method. Teaching exper-
iments differ from clinical interviews in that they involve experimentation with the 
ways and mechanisms of influencing students’ mathematical understandings (Steffe 
& Thompson, 2000). Teaching experiments allow a teacher-researcher to generate 
situations of learning systematically and to test conjectures and local hypotheses 
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about students’ mathematical meaning for a specific idea and how the student’s 
meaning is constructed (Steffe & Thompson, 2000). The design of a teaching exper-
iment begins with the researcher describing the mental actions and ways of thinking 
she conjectures to be essential for understanding the idea that is the focus of the 
study (i.e., performing a conceptual analysis; Thompson, 2011). A researcher might 
generate her initial conceptual analysis by reviewing the research literature related 
to understanding and learning the idea while leveraging her prior decentering 
actions and images of students’ thinking when learning that idea. In subsequent 
studies focused on this idea, the researcher generates new images of students’ think-
ing that lead to modifications of her conceptual analysis. If little is known about 
what is entailed in understanding and learning the idea that is the focus of the inves-
tigation, it is common for researchers to conduct a sequence of small-scale investi-
gations (e.g., exploratory teaching interviews11) with several students prior to 
conjecturing a trajectory and activities to support students in learning the idea in 
ways the researcher hypothesizes will be useful for them.

 Exploratory Teaching Interviews Lead to Advancements in a Researcher’s 
First-Order Model

Weber (2002) demonstrated that stating and attempting to explain the common con-
version equation that links a logarithmic statement and its equivalent exponential 
statement, logb(x) = y ↔ by = x, were not effective in supporting students in under-
standing of what the statement, y = logb(x), conveys—in particular, that y represents 
the number of factors of b in the product that equals the value of x. Kuper (2020) 
leveraged these findings in their design of tasks for a series of initial exploratory 
teaching interviews aimed at producing models of students’ meanings for exponen-
tial relationships and logarithms that might inform her first-order model for stu-
dents’ learning of the idea of logarithmic function and understanding logarithmic 
properties conceptually. Kuper began by probing students’ thinking when respond-
ing to the bacteria growth task, which states: “The population of bacteria in a culture 
t days since the bacteria started growing can be determined by the formula 
P(t) = 7(2)t. How many days have passed when the bacteria population is 224?”.

Results from performing a retroactive conceptual analysis on the data led Kuper 
and Carlson (2020) to identify common ways of thinking used by multiple students. 
Some students viewed P(t) as the name of the function instead of a representation of 
the bacteria’s population and the expression 7(2)t as instructions for calculating a 
value. These conceptualizations did not support the students in viewing the expres-
sion 7(2)t as defining the co-varying relationship between the population’s bacteria 
P(t) and the corresponding values of t.

11 See Steffe and Thompson (2000) and Castillo-Garsow (2010) for a description of exploratory 
teaching interviews.
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Kuper and Carlson (2020) further report that it was common for students to 
exhibit a calculational conception of solving the eq. 224  =  7(2)t. That is, they 
described their solution process as following a “solving for” algorithm of isolating 
a variable. Consequently, the students did not attend to the quantitative meaning of 
the calculations and expressions produced when constructing their solution. For 
example, their first step, dividing 224 by 7 to produce a result of 32, was viewed as 
a calculation disconnected from the context (i.e., students could not explain what 32 
represented in the context). We can contrast this with a quantitatively focused solu-
tion approach where the steps and expressions emerge through a process of deter-
mining the values of important quantities in the situation.12 This way of thinking 
would develop the ratio 224/7 as a relative size comparison of the final number of 
bacteria and the initial number of bacteria (with the result, 32, being the measure of 
that relative size). From this conceptualization, writing the eq. 32  =  2t could be 
explained as representing the fact that the number of bacteria must grow to become 
32 times as large as the original number in two ways: (i) as the result of making a 
relative size measurement and (ii) as the result of doubling the initial number of 
bacteria some number of times (in this case five times). (It is worth noting that 
Kuper (2020) gained clarity in the utility of this way of thinking about the meaning 
of the output of a logarithmic function, which impacted her first-order model of 
exponential functions and logarithms, during analysis of her interview data.) Since 
most students did not exhibit this quantitative approach when constructing their 
solution, their justifications for the solution included statements like, “t = 5 is the 
exponent on 2 that gives an answer of 32” and the answer 5 is the result of “taking 
the log of both sides.” They also observed students conceptualizing the solution 
(t = 5) as being the unknown value that satisfies the original statement 224 = 7(2)t 
because it produces the correct numerical value. We contrast this rather superficial 
meaning for the equation’s solution with other possible meanings, such as seeing t 
as representing a varying number of days since the first bacteria population mea-
surement was taken and imagining the value of t varying with the bacteria popula-
tion; then viewing the solution to 224 = 7(2)t as the value of t that corresponds to the 
number of bacteria reaching 224.

While Kuper (2018) had initial hypotheses about meanings for logarithms that 
would be productive for students understanding the idea of logarithm, her decenter-
ing actions led to her constructing new images of students’ thinking (epistemic stu-
dents). In particular, she gained clarity about students’ conceptions of function and 
function notation and their conception of what the output value of a logarithmic 
function represents. It is also noteworthy that the researcher’s decentering actions, 
including her reflecting on a student’s thinking and efforts to create tasks to advance 

12 See O’Bryan (2018, 2020) and Carlson et al. (2003) for more information about emergent symbol 
meaning, a way of thinking about calculations, expressions, and formulas where the order of oper-
ations and structure emerges from the way the individual has conceptualized relationships between 
quantities in the situation as opposed to viewing them merely as steps or parts of a calculation 
algorithm.
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a student’s thinking, led to adaptations to her first-order model and subsequent 
refinements of her conceptual analysis and instructional materials.

After their analysis of this initial interview data and after reflecting on ways of 
thinking they conjectured would advance students’ thinking, Kuper and Carlson 
(2020) conducted additional exploratory teaching interviews to test their hypothe-
ses. They devised tasks to support students in understanding a ratio as a relative size, 
a quotient as a measure of the relative size of a ratio’s numerator and the denomina-
tor, and the usefulness of these meanings on a student’s conception of the expres-
sion log2(32) as expressing the number of times some value needed to be doubled to 
increase that value by a factor of 32. The researchers’ analysis of the exploratory 
teaching interviews with the bacteria task revealed that, as students shifted to inter-
pret t = 5 as representing the number of doublings required for the initial number of 
bacteria to grow by a factor of 32, students began to coordinate the number of dou-
bling periods (5) and the relative size of the final number of bacteria and the initial 
number of bacteria. Put another way, if some value is doubled every day for 5 days, 
then the period over which the doubling occurred is 1 day, and the result of doubling 
a value each day for 5 days would produce a new value that is 25 (or 32) times as 
large as the original value.

To illustrate another foundational understanding, after exploring students’ con-
ceptions of repeatedly doubling and repeatedly tripling some value, including the 
ability to explain what the results of the repeated doubling or repeated tripling rep-
resented, Kuper and Carlson (2020) observed that the fluency students acquired did 
not extend to determining and representing repeatedly increasing some value by 
other factors (e.g., 1.5 or 17). Kuper and Carlson’s analysis of these interactions led 
to their hypothesizing that introducing the term tupling would lead to students’ gen-
eralizing their fluency in reasoning about doubling and tripling to non-integer num-
bers and result in their conceptualizing and speaking about tupling a number 1.25 
times.13 This observation was not only transformational relative to their hypotheses 
about productive meanings for students. It also became a new way of thinking about 
exponentiation for the researchers because it provided clarity in their own reasoning 
about exponentiation and productive ways of thinking about the connections 
between exponential expressions and logarithmic expressions (i.e., it profoundly 
changed their first-order models of exponential and logarithmic functions).14

We have provided these descriptions of two exploratory teaching interviews to 
highlight the subtle and novel insights the researchers gained about students’ 

13 In a later section, we described a hypothetical trajectory for introducing the idea of tupling.
14 See Kuper and Carlson (2020) for a detailed analysis of the development of the tupling idea and 
term and a conceptual analysis of its relationship to how the researchers thought about related 
mathematical ideas. For purposes of this chapter, it is enough to note the following descriptions. 
“If the value of a quantity becomes m times as large, we say the quantity’s value m-tuples…An 
m-tupling is an event in which the value of a quantity becomes m times as large…An m-tupling 
period is the amount of change in the independent quantity of an exponential function needed for 
the dependent quantity of the exponential function to become m times as large…[An] Exponent 
(on a value, b)…[is] [t]he number of elapsed b-tupling periods” (Conceptual Analysis section, 
Table 1).
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thinking and learning that were only possible by the researchers taking seriously 
their commitment to model students’ thinking (i.e., generating second-order models 
of students’ thinking and reflecting on these models to inform modifications to a 
researcher’s first-order model).

 First-Order Models, Decentering, Second-Order Models, and Conceptual 
Analysis Inform Task Design

A researcher’s models of students’ thinking of an idea guide the researcher’s task 
development and conceptual scaffolding. In the prior section, we described the 
researcher’s conception of a student’s impoverished conception of ratio and quo-
tient (the researcher’s second-order model) and noted that subsequent exploratory 
teaching interviews revealed students not initially conceptualizing a quotient as a 
measure of the relative size of a ratio’s numerator and denominator (Kuper & 
Carlson, 2020). The researchers’ awareness of students’ calculational orientation 
and its role in obstructing advances in students’ understanding of what expressions 
like log2(32) represent (e.g., the number of doublings that results in an initial value 
growing by a factor of 32) informed the design of new tasks aimed at fostering stu-
dent reasoning about the relative size of two quantities’ values and for representing 
the repeated tupling of some initial value. As the researchers reflected on the think-
ing they had observed, in relation to the thinking they deemed to be productive, we 
claim they were engaged in decentering  – they were bringing to mind students’ 
thinking and deciding on specific actions they hypothesized (e.g., showing an ani-
mation and deciding on specific questions to pose) for supporting advances in stu-
dents’ reasoning.

As an example of the impact of this reflection on decentering (meta-reflection), 
Kuper and Carlson (2020) proposed to initially ask students to construct a cactus. 
This was followed by a request to construct a second cactus to represent a doubling 
of the height of the first cactus (Table 9.1). The researchers also elected to introduce 
the term two-tuple to refer to a double in a cactus height. The rationale for this 
choice was to support students in developing a meaning for the idea of tupling in a 
familiar context as a foundation for future engagement in activities to generalize 
this meaning to conceptualize an 8-tupling, 4.5-tupling, and eventually an x-tupling. 
We claim that the decentering actions of the researchers contributed to their con-
structing ways of thinking about teaching the idea of logarithm. These included the 
researchers conceptualizing specific approaches (see Task Column in Table 9.1) for 
engaging students in conceptualizing the relative size of two quantities’ values as a 
foundational way of thinking for conceptualizing tupling and considering how 
many two-tuplings of some value would result in a final value of some quantity 
becoming 32 times as large as its initial value. We further claim that the products of 
the researchers’ decentering actions led to advances in their second-order models of 
specific students’ thinking and their resulting epistemic students (generalized 
images of students’ ways of thinking) related to learning the idea of logarithm. The 
researchers’ updated hypothetical learning trajectory was similarly refined to 

9 The Construct of Decentering in Research on Mathematics Learning and Teaching



310

Table 9.1 Sequence of tasks for learning the tupling language

Stage Task Possible responses
Rationale for task design and 
sequencing

1 Draw a cactus. Suppose 
this cactus doubles, 
which we refer to as 
two-tuples, in height. 
Draw the resulting cactus 
after this growth. The 
resulting cactus is how 
many times as tall as the 
starting cactus?
Also consider: three- 
tuples or triples

The student might measure 
the height of the cactus the 
student initially drew and 
use that height to draw a 
new cactus that is as tall as 
two copies of the initial 
cactus
The resulting cactus is two 
times as large as the initial 
cactus

This task introduces the new 
tupling language while also 
using the colloquial term 
“doubles.” Students are 
encouraged to participate in the 
activity of drawing the initial 
and resulting cactus
The effect of the activity that 
students may notice is that the 
resulting cactus is two times as 
tall as the initial cactus

2 Suppose the cactus you 
drew is eight-tuples 
(octuples) in height. If 
needed, draw the 
resulting cactus after this 
growth. The resulting 
cactus is how many times 
as large as the starting 
cactus?
Also consider: 4.5-tuples

The student might measure 
the height of the initial 
cactus drawn and draw a 
new cactus that is as tall as 
eight copies of the initial 
cactus. Or the student might 
reflect on his thinking in the 
previous task and answer 
the question without 
needing to draw the 
resulting cactus
The resulting cactus is eight 
times as large as the initial 
cactus

This task uses the new tupling 
language while also providing 
the colloquial term “octuples.” 
The student may choose to 
participate in the activity of 
drawing the initial and resulting 
cactus if he experiences 
difficulties
A student that reflects on the 
activity-effect relationship 
might imagine drawing the new 
cactus and conclude that the 
new cactus will be eight times 
as tall as the initial cactus

3 Suppose a cactus is 
57-tuples in height. If 
you were to draw the 
resulting cactus, what 
would we observe? (Hint: 
The resulting cactus is 
how many times as large 
as the starting cactus?)
Also consider: 
1000-tuples

The student might describe 
a process of measuring 57 
copies of the original cactus 
to arrive at the resulting 
cactus’ height
The resulting cactus will be 
57 times as large as the 
initial cactus

This is the first task in the 
sequence where participating in 
the activity of drawing the 
resulting cactus would be too 
tedious. Instead, we designed 
this task to perturb students 
who relied on the activity 
aspect of the task to reflect on 
the activity-effect relationships 
of the previous tasks and 
imagine the result of the 
activity as if the actions were 
performed

4 Suppose the cactus 
provided x-tuples in 
height. If you were to 
draw the resulting cactus, 
what would we observe? 
(Hint: The resulting 
cactus is how many times 
as large as the starting 
cactus?)

The resulting cactus will be 
x times as large as the initial 
cactus

This task does not provide a 
numerical value for the student 
to work with. Rather, the 
student is expected to make a 
generalization using the tupling 
language to describe an 
arbitrary number of tuples
Students who struggle to make 
this generalization may need to 
attempt more tasks like those in 
Stages 2 and 3 to engage in 
reflection of the activity-effect 
relationship
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include anticipated ways of thinking observed in prior exploratory teaching inter-
views. These updates resulted from advances in the researchers’ first-order model 
for understanding and learning the idea of logarithm. These advances in the research-
ers’ first-order model also led to more effective decentering (see Table 9.1, column 
2) and more targeted probing (see Table 9.1, column 1) during subsequent explor-
atory teaching interviews.

Advances in the researchers’ image of student thinking led to advances in the 
researchers’ trajectory for reasoning about the relative size of two quantities’ values 
(see Table 9.1, column 3)—in particular, the researchers were more anticipatory of 
student thinking and thus better prepared to respond productively to thinking that 
students presented. To view the tasks and ordering for other ideas in the hypothetical 
learning trajectory for supporting students’ understanding of the idea of tupling, and 
gaining fluency in using the idea to describe what the dependent quantity of a loga-
rithmic function represents, see Kuper and Carlson (2020).

The summary of the researchers’ hypothetical learning trajectory in Table 9.1 
reflects how the researchers came to think about exponential growth as a tupling 
process, a logarithmic expression as representing a number of tupling periods for a 
quantity to become some number of times as large as its original value, and the 
meaning of the relationship between exponential and logarithmic functions that fol-
lows from these understandings. The researchers then considered their images of 
epistemic students, grounded in second-order models of students they had worked 
with, and imagined the kinds of tasks, questions, and interventions necessary for 
perturbing and advancing the thinking of students who present these hypothetical 
ways of thinking. For example, the learning trajectory in Table  9.1 shows the 
researchers’ expectation that drawing diagrams representing the relative sizes of the 
cactus before and after growing, connected to common language such as “doubling” 
and “tripling,” would provide objects of reflection for making sense of the tupling 
process and developing a meaning for m-tupling as a general idea. Their images of 
epistemic students also guided them to imagine some students remaining reliant on 
figurative activity, such as drawing diagrams and not transitioning to coordinating 
the multiplicative growth of the cactus height and elapsed time more generally. This 
led the researchers to design tasks that would become increasingly difficult without 
abstracting the process of tupling to construct a mental image of the general rela-
tionship between elapsed time and the cactus’s height. The learning trajectory in 
Table 9.1 became the foundation for a teaching experiment with one student.

 Modeling Student Thinking in the Context of a Teaching Experiment

Kuper and Carlson (2020) implemented their learning trajectory in a subsequent 
teaching experiment conducted with one student. In the initial phase of their teach-
ing experiment, Kuper and Carlson aimed to support the student in conceiving of 
logarithms as functions that determine the number of b-tupling periods needed for 
some value to grow by a factor of m (m-tuple) (e.g., log2(8) represents the number 
of doubling periods needed for a value to eight-tuple or become eight times as 
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large). To facilitate this, Kuper and Carlson engaged the student in a series of tasks 
that prompted her to examine the growth of a mystical cactus, “Sparky the Saguaro.” 
During each teaching episode, the researchers continually updated their model of 
the student’s thinking as they interacted with the student. They included the follow-
ing vignette from an interaction with the subject, Lexi.:

In an attempt to determine the 3-week growth factor, Lexi began by noting 
Sparky’s initial height of one foot at week zero and then claimed, “three time(s)– 
no, every week it’s doubling, or times two for the height. So to get to week three, 
you’d say it’s like, you wouldn’t say 6 times as large – that wouldn’t make sense. I 
feel like you would say 3 times as large – that doesn’t make sense either.” This 
response suggests that Lexi first considered multiplying the 1-week growth factor 
(2) by the number of elapsed weeks (3) to calculate the 3-week growth factor. 
However, she quickly ruled out that option and looked to other values appearing in 
the situation. Lexi then appeared to observe the height of the cactus 3 weeks after its 
purchase and eventually concluded that at the end of week 3, Sparky would be eight 
times as tall as the initial Sparky. However, there was no evidence to suggest that 
Lexi had contemplated the relationship between the 1-week growth factor (2) and 
the number of weeks elapsed (3) as an approach for conceptualizing the 3-week 
growth factor (8). In particular, although Lexi noted that Sparky was doubling in 
height every week, her responses and attention to the heights of the cacti suggest 
that she had not yet conceptualized that doubling Sparky’s height 3 weeks in a row 
is the same as growing by a factor of 23 or 8 (Kuper & Carlson, 2020, "Teaching 
Experiment #1" section, para. 27).

Through a combination of decentering in the moment and performing a concep-
tual analysis of the interview data after the fact, Kuper and Carlson (2020) con-
structed an initial model of Lexi’s thinking and the implications of her thinking 
through the lens of the constructs characterized in their conceptual analysis. This 
led to follow-up work with the student to establish a more fine-grained description 
of her meanings that would inform modifications to the researchers’ first-order 
models, their images of epistemic students, and their hypothetical learning trajec-
tory. In the next teaching episode, Lexi was able to note that the doubling period for 
the cactus’s height was 1 week, the four-tupling period was 2 weeks, and the eight- 
tupling period was 3 weeks, but when asked to determine the three-tupling period, 
Lexi predicted it to be 1.5 weeks (halfway between 1 and 2 weeks since three is 
halfway between 2 and 4). To determine how Lexi thought about her answer, they 
asked her to determine the nine-tupling period (which, if her answer was correct and 
she understood that her answer provided the growth factor for a change in time 
elapse of 1.5 weeks, would mean that the nine-tupling period was 3 weeks). Rather 
than build off of her previous work, Lexi predicted that the nine-tupling period 
would just be a bit longer than the eight-tupling period, first guessing 3.5 weeks and 
then revising to 3.25 weeks. Kuper and Carlson write that “During the retrospective 
analysis of the third teaching episode, we hypothesized that Lexi’s difficulties with 
the aforementioned ideas were due to her not understanding that an A-tupling fol-
lowed by a B-tupling had the same overall effect as an AB-tupling” ("Teaching 
Experiment #1" section, para. 29). This was an important additional insight that, 
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once again, contributed to modifications to the researchers’ first-order models of the 
ideas under study, a refinement of their images of epistemic students, and contrib-
uted to revisions in their hypothetical learning trajectory. As a final comment, Lexi 
finally developed a meaning for the idea that a quantity that m-tuples and then 
n-tuples grows by a factor of mn and this “was essential for Lexi as she attempted 
questions requiring the use of the first logarithmic property 
[logb(m) + logb(n) = logb(mn)]” ("Teaching Experiment #1" section, para. 31). 

 Comments on Examples 1 and 2

Examples 1 and 2 provide illustrations of several key ideas related to decentering. 
In Thompson’s (2016) report, the task he designed in the professional development 
workshop, which the teacher opted to use with her students, was in response to 
decentering in the moment of working with the teachers. The second-order models 
he constructed of the teachers’ meanings aligned with images of epistemic students 
he possessed from prior research, reading, and conceptual analysis. He designed the 
task such that it would be particularly challenging for teachers with the ways of 
thinking about constant rate of change he hypothesized the teachers possessed, thus 
introducing a perturbation that would necessitate advances in the teachers’ mean-
ings. As he observed the teacher with her students, his first-order model influenced 

Fig. 9.2 The relationship between first-order models, decentering, conceptual analysis, second- 
order models, and epistemic students. (Note: *Recall that conceptual analysis can be used in mul-
tiple ways, each contributing differently to this process)
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both his decentering in the moment (what he noticed and how he responded to what 
he noticed) and during his retrospective conceptual analysis of the teaching episode 
and discussing the implications of the teacher’s meanings.

Kuper’s (2020) and Kuper and Carlson’s (2020) work illustrates how products of 
researchers’ decentering actions (second-order models) advanced their first-order 
model of what is entailed in understanding and learning the idea of logarithm. 
Kuper’s decentering actions when conducting a sequence of exploratory teaching 
interviews with different students were instrumental in the construction of epis-
temic students (various ways of thinking about logarithms). They further illustrated 
how the insights gained from these investigations led to updates in the researchers’ 
first-order model to include (i) ways of thinking about learning the idea of logarithm 
that were novel to them, (ii) new images of students’ thinking when interacting with 
tasks designed to perturb their thinking, and (iii) new ways of thinking about teach-
ing the idea of logarithm meaningfully to students. They claim that these insights 
led to refinements of the first author’s subsequent decentering actions, including the 
questions she posed and the nature of the models she built.

Figure 9.2 represents our image of the relationship between many of the con-
structs and processes we have discussed and exemplified thus far in the chapter.

Due to the cyclical and interdependent nature of many of the constructs and 
processes, there is no single “entry-point” to thinking about the relationship 
between first-order models, decentering, conceptual analysis, second-order 
models, and epistemic students. However, we will start our discussion with 
first-order models (an individual’s meanings and ways of thinking about a 
mathematical idea). As we have discussed and Thompson (2016) demonstrated, 
a first-order model impacts what someone is primed to notice and thus the 
nature of their decentering actions. Someone’s first-order model also supports 
the multiple facets of conceptual analysis (modeling a student’s/subject’s 
thinking and considering the implications of particular meanings), and concep-
tual analysis can produce insights that feed back into and influence the first-
order model. Reflection on the results of decentering actions and conceptual 
analysis can both support the construction of second-order models of students’/
subjects’ thinking, which, as demonstrated by Kuper (2020) and Kuper and 
Carlson (2020), can also influence a researcher’s first-order models. Engaging 
in decentering, conceptual analysis, and model-building all feeds into the 
development and refinement of images of epistemic students (the researcher’s 
image of generalized ways that students think about an idea). Images of epis-
temic students become incorporated in the teacher’s/researcher’s first-order 
model and are helpful for performing conceptual analysis and constructing 
second-order models because they are familiar ways of thinking a teacher/
researcher might recognize and be prepared to leverage during subsequent 
exploratory teaching interviews.
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315

 Uses of Decentering When Studying Teachers and Teaching

In the prior section, we illustrated how a researcher’s first-order model of an idea 
can influence a researcher’s decentering actions (to create second-order models 
of students’ thinking, perform conceptual analysis, and construct images of epis-
temic students) and how a researcher’s decentering actions in the context of 
interacting with a subject about an idea can influence the researcher’s first-order 
model of learning that idea. In this section, we make a case that advancing an 
instructor’s teaching practice to be more meaningful, coherent, and responsive to 
students’ thinking necessarily requires a similar symbiotic interaction between 
an instructor’s mathematical meanings and decentering actions (including decen-
tering in the moment or in retrospect to generate second-order models of stu-
dents’ thinking, when performing conceptual analysis and constructing images 
of epistemic students). We then illustrate uses of decentering for studying 
teacher-student interactions and conclude by providing an overview of a frame-
work that emerged from studying teachers in the context of their interacting with 
students in a classroom setting.

 Elaborating Our Meaning for MMT and Its Symbiotic 
Relationship with Decentering

In our descriptions of a teacher’s mathematical knowledge for teaching (MKT), we 
adopt Thompson’s (2016) use of the term mathematical meaning when referencing 
the organization of an individual’s actions, images, and other meanings associated 
with an idea, also referred to as a scheme.15 It is through repeated reasoning, reflec-
tion, and reconstruction that an individual constructs schemes to organize experi-
ences in an internally consistent way (Piaget & Garcia, 1987, 1991; Thompson, 
2016; Thompson et al., 2019). Thompson extended the construct of mathematical 
meaning when defining mathematical meanings for teaching (MMT) by including 
characterizations of a teacher’s actions that are related to teaching. Our character-
ization of a teacher’s MMT for an idea enabled us to make inferences about how a 
teacher organizes her experiences with an idea that might reveal the teacher’s image 
of what is entailed in understanding, learning, and teaching an idea.

Silverman and Thompson (2008), as discussed earlier in this chapter, claim that:

A teacher has developed knowledge that supports conceptual teaching of a particular math-
ematical topic when he or she (1) has developed a KDU within which that topic exists [e.g., 
proportionality as a way of thinking for understanding constant rate of change; covaria-
tional reasoning as a way of thinking for understanding growth patterns in quantitative 
relationships], (2) has constructed models of the variety of ways students may understand 
the content (decentering) [through decentering and performing a conceptual analysis]; (3) 

15 Tillema and Gatza (Chap. 3) provide a detailed discussion of scheme.
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has an image of how someone else might come to think of the mathematical idea in a simi-
lar way; (4) has an image of the kinds of activities and conversations about those activities 
that might support another person’s development of a similar understanding of the mathe-
matical idea; (5) has an image of how students who have come to think about the mathemat-
ical idea in the specified way are empowered to learn other, related mathematical ideas. 
(Silverman & Thompson, 2008, p. 508)

We view these phases as a general framing of the processes and products of devel-
oping MMT as a specific idea.

What is relevant for our work then is to describe the mechanisms for advancing 
an instructor’s MMT in ways that might lead to the instructor constructing an image 
of students’ thinking and spontaneously leveraging that image when interacting 
with students, planning a lesson, or reflecting on the impact of their instructional 
actions on students’ thinking. We classify images of teaching that include ways of 
thinking about students’ ways of learning an idea as a way of thinking about teach-
ing that idea. A way of thinking about teaching an idea then necessarily includes (i) 
how the teacher reasons about and understands the idea (the teacher’s first-order 
model) and if they have engaged in decentering relative to students’ thinking about 
that idea and (ii) their second-order models of students’ thinking about and learning 
that idea. As a teacher’s image of students’ mathematics (the teacher’s second-order 
models) becomes more stable through reflecting on acts of decentering, we consider 

Fig. 9.3 A framework for the development of ways of thinking about teaching an idea. (Note: 
*The act of teaching provides feedback on ways of thinking about teaching an idea and new oppor-
tunities to engage in decentering, conceptual analysis, refine first-order models, and refine images 
of epistemic students)
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these teacher images of students’ generalized ways of thinking (epistemic students) 
as informing (and being assimilated into) a teacher’s first-order model or mathemat-
ical meaning for teaching that idea (Figs. 9.2 and 9.3) such that the first-order model 
then contains multiple ways of thinking about the idea.16 To further clarify, we claim 
that a teacher’s MMT for an idea includes (i) habitual actions of making sense of a 
student’s thinking when learning an idea, (ii) images of students’ generalized ways 
of thinking about that idea (epistemic students), and (iii) images of the effect of prior 
instructional moves on students’ thinking. We further claim that a teacher’s scheme 
for teaching that idea includes both ways of thinking about learning that idea and 
ways of thinking about teaching that idea, in addition to the teacher’s stable way of 
understanding the idea. Through perturbations and accommodations to one’s 
scheme for knowing, learning, and teaching that idea, the teacher constructs more 
connected way of thinking about teaching that idea.

Tallman and Frank (2016) describe how a teacher’s attention to constructing 
models of students’ thinking was constrained when the teacher’s MKT did not 
include a more generalized way of thinking about what is entailed in measuring an 
angle (that any process for measuring an angle involves quantifying the length of 
the arc subtended by a circle centered at the angle’s vertex in any unit proportional 
to the circle’s circumference). They further claim that “the absence of such an inten-
tion makes a teacher ill-equipped to recognize the possibility that he or she is pro-
moting students’ construction of uncoordinated angle measure schemes” (Tallman 
& Frank, 2016, p. 92). They illuminate this claim in the data they present to illus-
trate that a teacher’s way of thinking about the idea of angle measure was tied to 
features of a specific context and was absent of a more general conceptualization of 
an angle measure as the result of a quantitative comparison. This tendency to employ 
specific ways of thinking about angle measure based on the context resulted in the 
teacher not recognizing reasoning used in one context as also being applicable in 
other contexts.17 In the moment of teaching, the teacher was focused on determining 
if students thought about the solution method in the same way as the teacher rather 
than considering the students’ contributions and recognizing the validity of other 
quantitative comparisons that could produce the correct answer.

Tallman (2018) demonstrated that a teacher’s interpretation of and responses to 
a student’s expressed thinking are strongly related to both the teacher’s personal 
mathematical meanings and the learning goals a teacher articulates prior to instruc-
tion. This finding further corroborates claims that teachers’ mathematical meanings 
for teaching are a primary source of their instructional decisions and actions 
(Thompson, 2017). The evidence produced by Tallman is conveyed in his detailed 

16 These ways of thinking about the idea may represent both valid and invalid reasoning and/or may 
be more or less productive based on the details of a situation.
17 For example, thinking about angle measure as communicating a fraction of the circumference of 
all circles centered at the angle’s vertex subtended by the angle compared to thinking about angle 
measure as communicating the relative size of the subtended arc lengths of all circles centered at 
the angle’s vertex and units of measure proportional to the circles’ circumferences (such as radius 
lengths or 1/360th circumference length).
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analysis of a teacher’s pre-teaching conceptions, classroom instruction, and stated 
learning goals. As an added methodological consideration, Tallman argues for the 
value of identifying and characterizing consistencies and discrepancies between 
teachers’ personal and enacted mathematical knowledge. As was demonstrated by 
Tallman, this approach has the potential to provide insights into “the characteristics 
of teachers’ subject matter knowledge that enable its effective transformation in the 
context of practice” ("Research on the Enactment" section, para. 8). 

 The Symbiotic Relationship Between a Teacher’s Meaning 
for an Idea and Her Decentering Actions

Research findings have demonstrated links between a teacher’s mathematical mean-
ings and her teaching practices, including her goals for student learning, and how a 
teacher interprets and responds to a student’s questions (Baş-Ader & Carlson, 2022; 
Heid et al., 2012; Marfai, 1992; Musgrave & Carlson, 2017; O’Bryan & Carlson, 
2016; Rocha, 2021; 2022; Rocha & Carlson, 2020; Tallman, 2021, 2018; Uscanga 
et al., 1995; Zbiek et al., 2014). According to Thompson et al. (1996), and further 
substantiated with empirical data by Tallman (2018) and Rocha (2022), “If a teach-
er’s conceptual structures comprise disconnected facts and procedures, their instruc-
tion is likely to focus on disconnected facts and procedures” (p. 416). In contrast, if 
a teacher has a coherent set of mathematical meanings, then it is at least possible, 
but not sufficient to guarantee, that this teacher will attempt to have her students 
construct this same set of coherent mathematical meanings (Thompson et al., 1996). 
This claim leads to the following questions. What processes and support tools are 
effective for supporting teachers’ development of coherent mathematical meanings? 
How can teachers be supported in noticing and utilizing students’ mathematical 
meanings within lessons designed to facilitate construction of those meanings? 
Based on our prior discussions of decentering and claim of the symbiotic relation-
ship between a teacher’s first-order model and decentering actions, we suggested 
further exploration of the role of teacher engagement in decentering actions as an 
approach for fostering ongoing advances in a teacher’s first-order model of know-
ing, learning, and teaching an idea.

In our research, we have found that supporting teachers’ development of more 
coherent meanings for the ideas they are teaching is a critical first step toward teach-
er’s valuing conceptual learning in their students; however, without the support of 
conceptually scaffolded curricular materials and aligned professional development, 
the teacher’s ways of thinking about teaching ideas and their actual teaching prac-
tices, including their inquiry into students’ thinking, might not advance (Carlson 
et al., 2010a, b). One benefit of such curriculum materials is how their design sup-
ports and encourages students to put their thinking on display, making it more likely 
that the teacher will begin to notice discrepancies between how students are think-
ing and how the teacher is thinking. As a teacher begins to puzzle about and make 
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sense of students’ thinking, they might also begin to notice commonalities across 
multiple students’ thinking and weaknesses in their own thinking. Both are impor-
tant in supporting teachers’ decentering activity. We provide an example of this in 
the next section.

 Advances in a Teacher’s Ways of Thinking About 
Teaching an Idea

In this section we illustrate how a teacher’s interaction with a student in the context 
of discussing a conceptually focused task in the Pathways materials (Carlson et al., 
2021) created a perturbation for the teacher. We further discuss how the teacher’s 
focus on expressing the quantitative meaning for the algebraic representation of the 
AROC led to advances in the teacher’s personal meaning for the idea of average rate 
of change (AROC), mathematical meaning for teaching the idea of AROC, and the 
teacher’s ways of thinking about teaching AROC.18

 Shifts in a Teacher’s Meaning for the Idea of Average Rate of Change 
(AROC) and Her Ways of Thinking About Teaching the Idea of AROC

Musgrave and Carlson (2017) have reported wide variations in precalculus instruc-
tors’ conceptions of average rate of change. In their study of 19 mathematics gradu-
ate students’ mathematical meanings for average rate of change, most expressed a 

procedural approach that involved their computing 
f b f a

b a

� � � � �
�

 and explaining the 

result as representing “rise over run” or the slope of a line between two points. After 
a professional development intervention, the researchers detected shifts in the grad-
uate students’ expressed meanings with most associating the idea of average rate of 
change with a constant rate of change. However, only eight (of the 19) included a 
description of what the constant rate of change represented, e.g., the constant rate of 
change over a specified interval of a function’s domain that results in the same 
change in the dependent quantity as the non-linear relationship defined by the func-
tion. These findings that even graduate students in mathematics have weak mean-
ings for this foundational idea bring to light the need for professional development 
for advancing a teacher’s meanings for ideas that are the focus of the teacher’s 
instruction (Musgrave & Carlson, 2017).

As a follow-up to analyzing and reporting data on the instructors’ conceptions of 
the idea of AROC, the researchers video-recorded two of the instructors who had 

18 The teacher was using conceptually scaffolded instructional materials that are based in research 
on learning the course’s ideas. She had attended a 3-day workshop prior to teaching with the mate-
rials and weekly content-focused professional development for a full year while using the materials.
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expressed weak meanings for AROC when teaching this idea in their Pathways 
Precalculus class. Their analyses revealed one instructor conveying a similar proce-
dural explanation to her students by demonstrating the steps for calculating an aver-
age rate of change while describing the result of the calculation as a “constant rate 
of change from 2 to 7.” The results from analyzing a second instructor’s interaction 
with a student revealed how an instructor’s decentering actions led to advances in 
both the instructor’s mathematical meaning of the idea of AROC and her ways of 
thinking about teaching the idea of AROC.  In what follows, we describe what 
unfolded during the class interaction between this instructor and a student.

Decentering Actions Lead to Advances in a Teacher’s MMT 
for Teaching AROC

In this example, the instructor began her lesson by showing her students how to 

determine the value of 
f f7 2

7 2

� � � � �
�

 for a quadratic function f. After completing the 

calculation, a student asked the instructor what the answer 
f f7 2

7 2

� � � � �
�

 meant. 

(The instructor later indicated that at that moment she was unsure how to answer the 
student’s question. She further conveyed that she had difficulty saying what an 
AROC represented in prior semesters, even though the curriculum included a con-
ceptual definition and explanation.) Since the curriculum had a consistent focus on 
representing the meaning of symbols,19 the instructor decided to follow up by 
exploring how the student was visualizing the symbols in the AROC definition. She 
asked the student to draw the graph of f on a whiteboard at the front of the room and 
then asked the student to locate the points (2, f(2)) and (7, f(7)) on f’s graph and 
illustrate “where you see f(7) – f(2) and 7 – 2 on the graph.” The student constructed 
vertical and horizontal lines to illustrate these changes on the graph. With some 
prompting the student was able to describe the horizontal line’s length as represent-
ing a change in x from 2 to 7 and f(7)  – f(2) as “how much f changed when x 
increased from 2 to 7.” The instructor then asked the student to explain how she saw 

the expression 
f f7 2

7 2

� � � � �
�

 on the graph. The student responded by asking, “Isn’t 

this just the change in y over the change in x, which is the slope of a straight line?” 
The instructor responded by asking the student, “What straight line?” After the stu-
dent constructed a line segment connecting the points (2, f(2)) and (7, f(7)), the 
instructor prompted the student to explain what this slope of the line segment repre-
sented. After a long pause, the instructor asked the more specific question, “What 
constant rate of change does the slope of this line represent?”

19 For more detail on this focus, see O’Bryan (2018), O’Bryan and Carlson (2016), and Carlson 
et al. (2003).

M. P. Carlson et al.



321

In the instructor’s description during a follow-up interview, it was during this 
long pause that she first conceptualized the calculation for the AROC as represent-
ing a constant rate of change over a specified interval of a function’s domain (e.g., 
from 2 to 7) that results in the same gain in the function’s dependent quantity com-
pared to what was gained by the function on that interval. She stated that prior to 
this moment she was only trying to recite the textbook description of what an AROC 
represents and was struggling to repeat the wording. This comment suggests that 
she might also have been perturbed by her prior inability to provide an adequate 
explanation and thus had brought the idea to mind at times other than when she was 
attending professional development or when she was teaching.

After the long pause, the student responded by describing the result of the calcu-
lation as the constant rate of change from 2 to 7. The instructor asked the student for 
clarification by demonstrating on the graph the change in the dependent quantity on 
that interval of the domain. We conjecture that the shift in the instructor’s under-
standing during the prior interaction is what motivated her to ask this question. The 
student responded by pointing to the vertical segment connecting (7, f(2)) and (7, 
f(7)) to represent the value of f(7) – f(2) and answered by saying the slope of the line 
segment connecting the two points is the constant rate of change on the interval 
from 2 to 7 that gives the correct change in the function value on that interval.

We claim that this exchange is an example of a teacher advancing both her MMT 
for AROC and her way of thinking about teaching the idea of average rate of change 
in the moment of teaching. We claim that this shift occurred when she was attempt-
ing to understand her student’s thinking. Because of the perturbation, the instructor 
experienced when she was unable to provide a response to the student’s initial ques-
tion and her subsequent actions to probe the student’s meaning for the symbols in 
the AROC expression, the interaction appeared to advance the instructor’s scheme 
for AROC. In the moment of interacting with the student, the instructor conceptual-
ized how the AROC calculation determined the constant rate of change that achieved 
the same net change as the function value on the interval of the domain over which 
she was determining the function’s AROC.

The data suggest that the instructor’s acts to decenter led to her reorganizing her 
scheme for AROC.  We conjecture that the perturbations she experienced when 
attempting to explain the idea in prior semesters (as noted above) contributed to her 
experiencing an accommodation to her scheme that resulted in her advancing her 
meaning for AROC. In the follow-up interview with this instructor, she revealed that 
she planned to use a graph and the same line of questioning about what the symbols 
in the AROC definition represent when teaching the idea of AROC in the future. This 
comment suggests that she also experienced a shift in her ways of thinking about 
teaching AROC. If the instructor engages in decentering behaviors in future interac-
tions with students when teaching the ideas of AROC, it is likely that both her image 
of students’ ways of learning the idea of AROC and her ways of thinking about teach-
ing the idea of AROC will continue to advance. In contrast, if the instructor’s actions 
are exclusively focused on conveying her more conceptually oriented way of think-
ing, with no consideration given to her lesson scaffolding, her students’ thinking, or 
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how she is being interpreted when teaching, her image of students’ thinking and her 
image of teaching the idea of AROC will not be likely to advance further.

 Characterizing Teacher Decentering

Our claim of the symbiotic relationship between a teacher’s MMT and her decenter-
ing actions extends to our research activity in that we have found that investigations 
focused on understanding the nature and development of a teacher’s MMT have led 
to advances in our understanding of mechanisms of decentering and vice versa. Thus, 
our research has sometimes focused on understanding and characterizing decenter-
ing while not focusing on a teacher’s MMT or how it develops. In this section, we 
provide an overview of our investigations that studied teacher decentering and share 
our most recent framework for characterizing teacher decentering behaviors that we 
observed in teachers during these studies (Baş-Ader & Carlson, 2022; Carlson & 
Baş-Ader, 2019; Carlson et al., 2015; Rocha & Carlson, 2020; Teuscher et al., 1982).

 Decentering as a Construct for Studying Teachers

We first used decentering (Carlson et al., 2007) to study teachers and teaching in the 
context of a research and development project aimed at supporting secondary 
precalculus- level teachers in shifting their instruction to be more conceptually ori-
ented (as defined by Thompson et al., 1994), coherent, and supportive in advancing 
students’ mathematical thinking of key ideas of precalculus that were documented 
to be foundational for learning calculus (e.g., Carlson, 1998; Carlson et al., 2007, 
2002, 2001). Our observations of select teachers’ classrooms prior to beginning the 
intervention revealed widespread practices of procedurally oriented classes with 
procedural explanations, similar to what had been reported in the Trends in 
International Mathematics and Science Study (TIMSS) (Stigler & Hiebert, 2008).

The initial intervention included weekly 3-hour professional development meet-
ings20 engaging precalculus teachers in tasks to support their constructing coherent 
meanings of the key ideas of precalculus (Carlson et al., 2007).21 Teachers also met 
twice per week in professional learning communities (PLCs) of four to seven teach-
ers from the same school. Each PLC had a designated facilitator (one of the 

20 The teachers received 3  hours of mathematics education graduate credit and a stipend for 
attending.
21 The targeted meanings were based on our current conception of the body of research on knowing 
and learning key ideas of precalculus (Breidenbach et  al., 1992; Carlson, 1998; Carlson et  al., 
2001, 2002, 2015; Carlson, Oehrtman & Engelke 2010; Carlson, Oehrtmen & Teuscher, 2010; 
Engelke et  al., 2005; Frank, 2017; Kuper, 2020; Kuper & Carlson, 2020; Carlson et  al., 2021; 
Monk, 2010; Moore, 2012; Moore & Carlson, 2012; O’Bryan, 2018; Strom, 2015; Thompson, 
1994a, b, 2000</CitationRef>).
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teachers) who led the community in discussing the idea (e.g., rate of change, expo-
nential growth) that was the focus of the prior week’s professional development 
meeting. The facilitators received weekly coaching between meetings from a proj-
ect leader who had reviewed a video recording of their PLC meeting from the prior 
week to offer suggestions for improving their facilitation abilities, including the 
advancement of their colleagues’ thinking and meanings, with the coach highlight-
ing interactions that probed another’s thinking. For example, they posed questions 
to promote reflection on unproductive PLC interactions (e.g., “Sharon, is there a 
reason you don’t allow Mary to answer questions?”; “Juan, what do you think David 
meant when he said…?”; “Dan, are you aware of who is doing most of the 
talking?”),22 shared video of interactions in which the facilitator posed questions 
aimed at revealing how another PLC member was thinking, and prompted the com-
munity of PLC facilitators to discuss aspects of the interaction.

The results from coding the videos of the professional development and PLC 
meetings that were collected over that full semester revealed that the teachers gener-
ally did not attempt to communicate their thinking when speaking and did not make 
efforts to understand their colleagues’ thinking (Carlson et al., 2007). In particular, 
the teachers’ explanations made vague references to quantities (e.g., “it goes up”), 
provided variable definitions that lacked precision (e.g., “d = distance”), and 
explained graphs as static shapes. Their explanations included little or no explana-
tion of the thinking they used to approach a problem or construct their solutions.

These findings of the widespread procedurally oriented patterns of interaction 
led to our adaption of the norms for the bi-weekly PLC meetings to include a con-
vention that all PLC members attempt to reference quantities when speaking and 
explain the thinking that led to their constructions and calculations. To raise teach-
ers’ consciousness about their patterns of speaking, thus making their speaking an 
object of reflection, we termed this expectation for their speaking and explaining as 
speaking with meaning (Clark et  al., 2008). We further negotiated more general 
Rules of Engagement23 that included a goal for PLC members to listen to the utter-
ances of their colleagues while attempting to make sense of the meanings they were 
conveying, and in instances when they were unclear about what was being expressed, 
we conveyed an expectation that they pose a question that might clarify what they 
thought was unclear.

The PLC facilitators were charged with taking the lead role in modeling and sup-
porting their colleagues in speaking with meaning and attempting to understand the 
meanings being expressed by members of their PLC. The study revealed widespread 

22 Over a full year, each of four PLC twice-weekly meetings was video-recorded, with weekly 
recording coded by two researchers and then shared weekly with research team (including the 
facilitator coach).
23 There were four rules of engagement that emerged as explicit conventions for promoting the 
sociomathematical norms of “speaking with meaning” and attempting to make sense of another’s 
thinking that were adopted by the teachers as explicit conventions for communication within their 
classrooms. We created posters that listed these conventions and the teachers elected to post them 
in their classrooms.
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advances in the PLC members speaking with meaning and substantial advances in 
three of the PLC facilitators’ interest and efforts to make sense of other PLC mem-
bers’ thinking. The various manifestations of decentering we observed are articu-
lated in five decentering moves we identified when analyzing their conversations 
(Carlson et al., 2007). Their decentering actions ranged from the facilitator showing 
no interest in understanding the thinking or perspective of another PLC member to 
the facilitator building a model of another’s thinking and through interaction, build-
ing a model of how she (the facilitator) might be interpreted, and then using both 
models to determine her next action.

The analysis of this data further revealed that a facilitator’s ability to pose ques-
tions that resulted in advances in another’s thinking was typically linked to the facil-
itator’s understanding of the idea under discussion. This awareness provided our 
first insight into the strong link between a teacher’s capacity to respond productively 
to another’s thinking and the teacher’s personal meaning for the idea under discus-
sion. When PLC facilitators had a weak personal meaning for an idea under discus-
sion, they were not equipped to assess the efficacy of another’s thinking or intervene 
productively to advance another’s thinking; nor were they able to provide conceptu-
ally oriented explanations. In the authors’ reporting (Carlson et al., 2015), they fur-
ther noted that general inquiries made by a facilitator such as a request for a PLC 
member to revoice or extend another PLC member’s explanations sometimes led to 
two PLC participants (both who had relatively strong meanings for the idea being 
discussed) constructing models of each other’s thinking. In contrast, the facilitator 
who showed no interest in understanding her PLC members’ thinking “exhibited 
extreme discomfort with the content” (Carlson et  al., 2015, p.  847) and, when 
probed by the PLC facilitator coach to explain her thinking, consistently responded 
by explaining how she obtained her answer. On an occasion when the coach encour-
aged her to ask her colleagues to explain their thinking, she responded by question-
ing why one would be interested in understanding the thinking of another. She 
clearly had not adopted the goals of the project. The project leaders later learned 
that this PLC facilitator was assigned to be the facilitator because she was the most 
senior member of the precalculus instructional team at that school.24

After a year of participating in the intervention, some teachers expressed that 
their participation in the professional development and PLC meetings had impacted 
the quality of their interactions with students, in particular their attempts to make 
sense of their students’ explanations and their ability to pose follow-up questions to 
reveal students’ thinking. During the subsequent academic year, the researchers 
video-recorded and studied the classroom instruction of four PLC members who 
had demonstrated efforts to make sense of their colleagues’ thinking during the 
PLCs. The researchers’ analysis of this data (Teuscher et al., 1982) illustrated how 
the teacher’s decentering actions (or lack of these actions) assisted (or constrained) 

24 We report this result to highlight the importance of initial interest and seeing value in understand-
ing another’s thinking as a desirable attribute of a facilitator of other teachers’ decentering actions. 
Going forward in our project, we requested school administrators to identify facilitators who val-
ued the goals of the project.
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the teacher in making productive in-the-moment instructional decisions. These 
studies established that advances in a teacher’s ability to build a model of a student’s 
thinking corresponded with advances in a teacher’s meanings and that advances 
toward more conceptually oriented explanations could be fostered by teachers mak-
ing their speaking and listening an explicit focus of personal and collective reflec-
tion. In what follows we describe the products of a third study (Baş-Ader & Carlson, 
2022) that built on these findings and produced a more comprehensive Teacher 
Decentering Framework, including specific teacher actions that were associated 
with five different levels of decentering actions that we observed.

 A Decentering Framework for Studying Teaching

Our subsequent professional development work in the Pathways Project continued 
our focus on promoting reflective discourse (e.g., speaking with meaning and mak-
ing sense of another’s thinking) as a mechanism for advancing a teacher’s personal 
mathematical meanings and teaching practices. In this section, we provide an over-
view of a framework (Baş-Ader & Carlson, 2022)  that resulted from analyzing 
video data from three 40-student precalculus classes taught by mathematics gradu-
ate students using an early version of the Pathways Precalculus research-based con-
ceptually scaffolded curriculum (Carlson et al., 2021) in a university setting. The 
three subjects had taught with these materials for at least 1 year while attending 
weekly 90-minute Pathways conceptually focused professional development meet-
ings. In these meetings, the professional development leader held the instructors 
accountable for attempting to speak with meaning (Clark et al., 2008) and attempt-
ing to understand their colleagues’ explanations.25 The choice to collect the data in 
a context of instructors attending content-focused professional development and 
using a conceptually focused curriculum provided the possibility for the teacher- 
student interactions to be coherent and meaningful.

In presenting the data, Baş-Ader and Carlson (2022)  described the learning 
goals for the idea central to the interaction prior to presenting their analysis of the 
data; doing so enabled the reader to assess the decentering moves they identified 
relative to their effectiveness in advancing the conversation toward a more pro-
ductive mathematical way of thinking. Level 0 of the framework (Table 9.2) is 
characterized as showing no interest in the student’s thinking, although the 
instructor does prompt the student to share her answer. The instructor might show 
concern for the student getting the correct answer but shows no interest in the 
thinking the student engaged in to determine her answer. In light of our review of 
Piaget’s construct of intellectual egocentrism (the child unconsciously remains 
centered on his own actions and own point of view), we extend this construct to 

25 In particular, the professional development leader posed questions to the speaker to call attention 
to vague descriptions (e.g., “What distance?” or “What does it mean for it to be decreasing?”) and 
regularly asked participants to describe how they had interpreted what a colleague had just 
described.
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Table 9.2 A framework that characterizes a continuum of an instructor’s decentering actions 
(Baş-Ader & Carlson, 2022, pp. 106–107)

Mental actions Decentering levels Description of the behaviors

Does not reflect on 
aspects of the interaction 
that are contributed by 
the student
Assumes that the 
student’s thinking is 
identical to her own
Uses first-order model 
during interaction to 
organize and guide her 
actions

Level 0: no interest
Shows no interest in the 
student’s thinking, but shows 
interest in the student’s answer. 
Makes no attempt to make 
sense of the student’s thinking, 
but takes actions to get the 
student to say the correct 
answer

Asks question to elicit the student’s 
answer
Listens to the student’s answer
Does not pose question aimed at 
revealing the student’s thinking:
   Poses question that focuses on a 

procedure [e.g., What do you do 
next?]

   Poses question to have the 
student echo key phrase or 
complete steps to get the correct 
answer

Does not reflect on 
aspects of the interaction 
that are contributed by 
the student
Recognizes that the 
student’s thinking is 
different than her own 
but does not intentionally 
analyze the student’s 
mental actions
Uses first-order model 
during interaction to 
organize and guide her 
actions

Level 1: Interest
Shows interest in the student’s 
thinking, but makes no attempt 
to make sense of the student’s 
thinking. Attempts to move the 
student to her way of thinking 
without trying to understand or 
build on the expressed thinking 
and/or perspective of the 
student

Poses question to reveal the 
student’s thinking [e.g., Why? What 
does that mean? What does that 
term represent?], but does not 
attempt to understand the student’s 
thinking
Guides the student toward her way 
of thinking:
   Poses question for the purpose 

of getting the student to adopt 
her way of thinking or has the 
student echo key phrase

   Gives explanation aimed at 
getting the student to adopt her 
way of thinking

   Evaluates how the student’s 
response compares to her way of 
thinking or approach

Reflects on aspects of the 
interaction that are 
contributed by the 
student
Recognizes that the 
student’s thinking is 
different than her own 
and attempts to analyze 
the student’s mental 
actions
Builds the second-order 
model of the student’s 
thinking
Uses first-order model 
during interaction to 
organize and guide her 
actions

Level 2: make sense
Makes an effort to make sense 
of the student’s thinking and 
perspective but does not use 
this knowledge in 
communication

Poses question to reveal the 
student’s thinking and attempts to 
adopt the student’s perspective
Does not use the student’s thinking 
for the purpose of advancing the 
student’s current way of thinking:
   Does not pose question aimed at 

prompting the student to reflect 
on or advance her current way of 
thinking

   Redirects the conversation 
toward her way of thinking or 
approach

(continued)
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Mental actions Decentering levels Description of the behaviors

Reflects on aspects of the 
interaction that are 
contributed by the 
student
Assumes that the student 
has unique ways of 
thinking
Builds and continually 
adjusts the second-order 
model of the student’s 
thinking
Operates from the 
second-order model of 
the student’s thinking to 
make decisions on how 
to act

Level 3: use
Makes sense of the student’s 
thinking and perspective and 
makes general moves to use the 
student’s thinking when 
interacting with the student

Prompts the student to explain the 
student’s way of thinking:
   Poses question to gain insights 

into the student’s way of 
thinking

 Leverages the student’s expressed 
thinking to advance the student’s 
understanding of key ideas in the 
lesson:
   Poses question or gives 

explanation that is attentive to 
the student’s thinking and aimed 
at advancing the student’s 
understanding of the key idea

   Poses question or gives 
explanation to support the 
student in making connections 
between different viable ways of 
thinking of the key idea

Reflects on aspects of the 
interaction that are 
contributed by the 
student
Assumes that the student 
has unique ways of 
thinking
Builds and continually 
adjusts the second-order 
model of both the 
student’s thinking and 
how the student might be 
interpreting her utterance
Operates from the 
second-order model of 
both the student’s 
thinking and how the 
student might be 
interpreting her utterance

Level 4: use and adjust
Constructs an image of the 
student’s thinking and 
perspective and then adjusts her 
action to take into account both 
the student’s thinking and how 
the student might be 
interpreting her utterance

Poses question to reveal and 
understand the student’s thinking
Follows up on the student’s 
response in order to perturb the 
student in a way that extends the 
student’s current way of thinking:
   Poses question informed by the 

student’s current way of thinking 
and meaning of the key idea

   Gives explanation informed by 
the student’s current way of 
thinking and meaning of the key 
idea

Table 9.2 (continued)

classify an instructor’s actions as exhibiting intellectually egocentric behavior 
when they only exhibit Level 0 decentering actions.

To illustrate this behavior and how we extracted information from our analy-
sis, we present one of the excerpts from Baş-Ader and Carlson (2022) detailing 
an interaction between an instructor and student in the context of talking about a 
task that prompted students to describe the relative size of two quantities. As 
background, the authors conveyed that the students were given two lines of dif-
ferent lengths (60 and 25 inches), and students were expected to perform a mul-
tiplicative comparison of the segments’ lengths. Baş-Ader and Carlson explain 
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that the curriculum prompted students to determine the length of one segment 
using the second segment’s length as the unit of measurement. The reader is also 
alerted to the fact that both segments are given in a common unit, so it is possible 
for the student to determine the relative size of quantity A in units of quantity B 
by performing the calculation (measure of quantity A in the common unit)/(mea-
sure of quantity B in the common unit). Baş- Ader and Carlson explain that the 
quotient, k = (measure of quantity A in the common unit)/(measure of quantity B 
in the common unit), conveys that quantity A is k times as large as quantity 
B.  They further note that this pre-algebra-level task is included in Pathways 
Precalculus curriculum because the idea of relative size is foundational for 
understanding and representing exponential growth and other ideas that appear in 
a precalculus course (e.g., rational functions, radian measure).

Excerpt 1, taken from Baş-Ader and Carlson (2022, p. 108), highlights the main 
point that the instructor’s (Karen’s) focus was on getting the students to say the cor-
rect answer. She told them what to calculate (“quantity A over quantity B”) and then 
prompted them to restate the value of the quotient using the numbers they were 
given for the two lengths.

Excerpt 1
 1 Karen: If we want to see how big A is in terms of B…Remember, so quantity A 

over quantity B, what is that?
 2 Student 1: Twenty-five over sixty?
 3 Karen: Twenty-five over sixty, good. So, if we write twenty-five over sixty, what 

does that represent, again?
 4 Student 2: A over B.
 5 Karen: A over B, what does that mean like in English sentence?
 6 Student 2: How big A is compared to B.
 7 Karen: Exactly, how big A is compared to B. So, twenty-five over sixty, we would 

say A is equal to twenty-five over sixty whatever B’s length is, okay? If we write 
out twenty-five over sixty in a calculator we will get .416 about. So we could say 
A is .416 times B.

The instructor listened to students’ answers, but at no point during the exchange 
did she ask students to share their thinking. Baş-Ader and Carlson (2022) concluded 
by pointing out that the instructor appeared satisfied that a student had finally 
repeated the words she had previously expressed. We could classify this instructor’s 
interaction as intellectually egocentric behavior since there were no instances of her 
exhibiting behaviors to suggest that she was interested in her students’ thinking.

Table 9.2 displays the researchers’ characterization of the decentering levels 
(column 2), the associated mental actions (column 1), and the instructor behaviors 
identified when coding the videos (column 3). Each row of the table illustrates how 
these three categories are linked. As an example, the entries in row 2 characterize 
Level 1 decentering as expressing interest in a student’s thinking by asking the stu-
dent to say what a statement, term, etc. represents. The instructor recognizes that the 
student’s thinking differs from her own, but she takes no action to understand the 
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student’s thinking. Instead, the instructor presents her approach and/or thinking and 
makes moves to get the student to adopt her way of thinking.

An instructor is classified as exhibiting Level 2 decentering actions if she poses 
questions to reveal a student’s thinking and then shows evidence of understanding the 
student’s thinking (builds a second-order model) but does not use the student’s think-
ing during interaction. Even though the instructor has constructed an understanding of 
the student’s perspective/thinking, her subsequent questions, drawings, and explana-
tions do not build from or leverage the thinking the student displayed. Similar to Level 
1, the instructor redirects the conversation to the instructor’s way of thinking. In our 
video analyses of teacher-student interactions, our efforts to characterize teacher-stu-
dent interactions necessitated our including constructs to classify mental actions that 
would not be considered decentering since the teacher did not attempt to build a model 
of a student’s thinking. These framework levels allow for the classification of initial 
shifts toward the students’ perspectives, such as showing interest in a student’s 
answers (Level 0), showing interest in a student’s thinking, and then taking action to 
move the student to the teacher’s way of thinking (Level 1).26

A teacher who is classified as exhibiting Level 2 mental actions is inquiring into 
a student’s thinking and engages in mental actions to construct a second-order model 
of the student’s thinking. However, she does not use her image of how the student is 
thinking to inform future actions. In contrast, both Level 3 and Level 4 classifications 
characterize a teacher using her second-order model of a student’s thinking to inform 
her instructional actions. In the highest level (Level 4) of the Decentering Framework, 
the teacher reflects not only on the student’s thinking but also on her own thinking in 
relation to the student’s thinking. This mental action aligns with Liang’s (2003) theo-
retical description of “scheme activity” that she associates with what she calls Type 
3 decentering, involving the teacher consciously treating her schemes as objects of 
reflection. If a teacher then reflects on her images of students’ ways of thinking about 
an idea (epistemic students), we say the teacher is developing ways of thinking about 
teaching an idea. As such, we consider Level 4 of our framework to involve not only 
teachers’ reflecting (decentering) activity but also their reflections on prior reflecting 
(decentering) activity. We also note that a teacher’s actions to reflect on her decenter-
ing actions and their effectiveness in advancing a student’s thinking is constructing 
ways of thinking about teaching an idea.

Our experiences of conducting professional development with hundreds of sec-
ondary teachers and college instructors (and a retrospective review of our classroom 
video data) support that while most secondary and university teachers claim to be 
interested in student thinking, very few in either population initially exhibited even 
Level 1 decentering behavior (e.g., Carlson et al., 2015); their focus was primarily 
on supporting students in learning methods for obtaining answers. Moreover, during 
the first semester of either a secondary teacher or university instructor using the 
Pathways cognitively scaffolded instructional materials (Carlson et al., 2021) and 

26 For a detailed description of the mathematical contexts, learning goals, tasks, and researchers’ 
methods for constructing this decentering framework, see Baş-Ader and Carlson (2022).

9 The Construct of Decentering in Research on Mathematics Learning and Teaching



330

participating in our weekly professional development, we observed only modest 
shifts in the teachers’ interest in their student’s thinking. During the first semester of 
their teaching with the Pathways Precalculus materials, the instructors appeared 
unable (or unwilling) to consider their students’ thinking while consumed by mak-
ing sense of the course’s ideas.27 After a teacher’s personal meanings for the course’s 
ideas became more coherent (Musgrave & Carlson, 2017), professional develop-
ment leaders were more successful in fostering productive discussions about meth-
ods for revealing students’ thinking (Rocha, 2021).

Our approaches for fostering higher-level decentering actions include (i) view-
ing and discussing classroom videos of a teacher’s decentering actions, (ii) asking 
the instructors to share instances from their teaching when they made sense of and 
leveraged a student’s thinking,28 (iii) designing assessment items that reveal stu-
dents’ thinking, etc. It is not our goal, nor is it realistic, for most teachers to con-
sistently engage in high-level decentering actions when teaching a course with 
fixed pacing. However, increasing a teacher’s interest in students’ thinking and 
fostering growth in their listening and questioning toward understanding students’ 
thinking can create the expectation that students’ thinking is relevant. As the 
teacher operates with an orientation to understand and affect students’ thinking, 
occasional efforts to decenter, particularly in instances when the teacher is not 
satisfied with her efforts to affect her students’ learning, can over time lead to a 
large cumulative effect on a teacher’s MMT and ways of thinking about teaching 
specific ideas.

In one case in which we collected interview and classroom video data from a 
few teachers over multiple (as many as three) years, we observed a teacher’s lec-
tures becoming more coherent and anticipatory of students’ thinking (e.g., mak-
ing drawings and providing explanations focused on engendering productive ways 
of thinking). We have observed that a teacher can progress to demonstrate higher 
levels of decentering actions when supported in doing so—e.g., using cognitively 
scaffolded curriculum focused on advancing and revealing students’ thinking, 
attending weekly PD aimed at supporting teacher reflection on MMT for ideas, 
how they are learned, and how they can be taught. In this sense, we claim that 
advancing toward higher- level decentering actions is developmental and emerges 
in concert with advances in a teacher’s meanings for the idea under discussion and 
opportunities for teachers to reflect on their student’s thinking and the effective-
ness of their instructional choices. As teachers repeatedly engage in decentering 
in the context of teaching a specific idea, their ways of thinking about learning 
that idea and ways of thinking about teaching that idea can continue to advance. 
As we continue to inquire into the symbiotic relationship between a teacher’s 
mathematical meanings and decentering actions, we conjecture that studying 

27 Recall that our assessment of graduate students’ meaning for precalculus ideas (Musgrave & 
Carlson, 2017; Carlson & Baş-Ader, 2019) revealed that even graduate students in mathematics 
have weak meanings of precalculus ideas (average rate of change).
28 During one semester the professional development leader began each weekly meetings by asking 
each (of 9 = nine) instructors to share instances when they made sense of how a student was think-
ing and then made an instructional move that leveraged the model they had built.
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multiple teachers in the context of their teaching a specific idea will expand our 
understanding of this relationship while contributing to our understanding of how 
ways of thinking about teaching that idea develop.

 Concluding Remarks

We have illustrated the important role that decentering plays when modeling a stu-
dent’s thinking during both research and teaching and highlight the symbiotic rela-
tionship that exists between a teacher’s and researcher’s mathematical meanings for 
an idea and their decentering actions. In particular, we presented examples of how a 
teacher’s/researcher’s first-order model of the mathematical ideas impacts what 
they are positioned to notice when decentering, how reflecting on the results of 
decentering and performing a conceptual analysis can produce second-order models 
of students’ thinking, and how these models might inform the teacher’s/researcher’s 
first-order models. We further highlighted how iterating this cycle (Fig. 9.3) can 
help teachers/researchers construct stable images of epistemic students. Our exam-
ples illustrate how repeated efforts to decenter when interacting with students (dur-
ing teaching or conducting research studies) help support iterative refinements in an 
individual’s meanings for mathematical ideas and images of others’ thinking and 
learning an idea. As further illustration of the nature of decentering, we discussed 
the Baş-Ader and Carlson's (2022) Teacher Decentering Framework (Table 9.2) that 
provides a fine-grained characterization of the mental processes exhibited by teach-
ers as they move from an egocentric perspective to building and leveraging their 
second-order model of a student’s thinking during interactions.

It is worth noting that the examples provided in this chapter are from research 
studies that focus on quantitative reasoning29 and covariational reasoning30 as foun-
dational ways of thinking that can provide coherence to students’ mathematical 
experiences. Students who develop the disposition to reason quantitatively (i.e., 
identify quantities in a situation, and conceptualize how those quantities’ values are 
related and vary in tandem) are better positioned to construct algebraic and graphi-
cal representations of mathematical relationships that are personally meaningful to 
the one constructing them (see Carlson et al., 2003). O’Bryan and Carlson (2016) 
also demonstrated that teachers who value and are committed to supporting their 
students in reasoning quantitatively may be more attentive to and interested in the 
meanings students express. They may also be more likely to intentionally create 
opportunities to reveal how their students are thinking and consider what meanings 

29 Quantitative reasoning (Thompson, 1988, 1993, 1994a, 1994b, 2012, 2013) describes a way of 
thinking whereby an individual identifies quantities in a situation (measurable attributes of an 
object), conceptualizes a measurement scheme for producing values representing the quantity’s 
size, and conceptualizes a structure in how various quantities in a situation are related and 
interdependent.
30 Covariational reasoning (Carlson et  al., 2002; Saldanha & Thompson, 1998; Thompson & 
Carlson, 2014) involves the identification of pairs of quantities in a situation that vary and concep-
tualizing the constraints on how those quantities change in tandem.
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motivated a student’s construction of specific mathematical representations of quan-
titative relationships.

The examples we presented also highlight the role of cognitive research on task 
development (recall the constant rate of change, logarithm, and AROC tasks) and 
their role in perturbing and revealing students’ thinking and advancing a teacher’s 
mathematical meaning for teaching an idea. Since most teachers do not have the time 
or resources to write curriculum or study student learning, researchers must lead the 
way in devising and studying processes for supporting shifts in teachers’ mathemati-
cal meanings, ways of thinking about teaching specific ideas, and their habitually 
engaging in decentering (when teaching and when planning and reflecting on their 
teaching). In our research projects (Musgrave & Carlson, 2017; O’Bryan & Carlson, 
2016), we found that researcher-developed professional development and aligned 
research-developed curricula can facilitate teacher decentering and advances in a 
teacher’s mathematical meanings for teaching ideas. We offer our framework 
(Fig. 9.3) for advancing teachers’ ways of thinking about teaching an idea as a gen-
eral theory for others to leverage and refine in the context of devising and studying 
mechanisms and tools to support shifts in teachers – shifts that lead to teachers enact-
ing and continually advancing their teaching practices to include a focus on under-
standing and advancing students’ thinking and understanding specific ideas.

As a first line of inquiry for future research, we recommend devising and study-
ing professional development experiences for instructors aimed at supporting 
advances in their (i) mathematical meanings for teaching an idea (first-order knowl-
edge), (ii) decentering actions when planning a lesson and implementing the lesson, 
and (iii) subsequent meta-reflection on the effectiveness and products of their 
decentering actions and instructional choices when teaching the lesson. We hypoth-
esize that professional development with this focus will lead to incremental advances 
in a teacher’s instruction to be more supportive of and responsive to students’ think-
ing and learning. We conclude by providing a short list of questions for researchers 
to consider:

• As teachers’ (or researchers’) images of epistemic students become more refined, 
how does this change what they notice, how they plan lessons, and how they 
respond to students during interactions?

• What factors foster advancements in teachers’ interest in and spontaneously 
inquiring into a student’s thinking during teaching and after teaching an idea? 
What is the interaction between a teacher’s/researchers’ decentering actions and 
her mathematical meanings for teaching that idea?

• What factors foster advances in a teacher’s reflection on her prior reflections 
(meta-reflection) when planning a lesson and when considering the effectiveness 
of a lesson?

• What factors (profession development experiences/tools) support advances in an 
instructor’s reflection on her ways of thinking about teaching an idea, including 
her pedagogical choices (e.g., if, when, and how to use an applet, choice of tasks 
for students to complete, interactions/questions for students, what to say and 
write when leading a discussion)?
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