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ABSTRACT. This paper describes the problem-solving behaviors of 12 mathematicians as
they completed four mathematical tasks. The emergent problem-solving framework draws
on the large body of research, as grounded by and modified in response to our close observa-
tions of these mathematicians. The resulting Multidimensional Problem-Solving Framework
has four phases: orientation, planning, executing, and checking. Embedded in the framework
are two cycles, each of which includes at least three of the four phases. The framework also
characterizes various problem-solving attributes (resources, affect, heuristics, and monitor-
ing) and describes their roles and significance during each of the problem-solving phases.
The framework’s sub-cycle of conjecture, test, and evaluate (accept/reject) became evident
to us as we observed the mathematicians and listened to their running verbal descriptions of
how they were imagining a solution, playing out that solution in their minds, and evaluating
the validity of the imagined approach. The effectiveness of the mathematicians in making
intelligent decisions that led down productive paths appeared to stem from their ability to
draw on a large reservoir of well-connected knowledge, heuristics, and facts, as well as their
ability to manage their emotional responses. The mathematicians’ well-connected concep-
tual knowledge, in particular, appeared to be an essential attribute for effective decision
making and execution throughout the problem-solving process.
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1. INTRODUCTION

The mathematics education community has shown interest in understand-
ing the nature of problem solving for over 45 years. While early work in
problem solving focused on describing the problem-solving process (Pólya,
1957), more recent investigations have focused on identifying attributes of
the problem solver that contribute to problem-solving success. In a review
of the problem-solving literature from 1970 to 1994, Lester (1994) noted a
consistent finding that problem-solving performance appears to be a func-
tion of several interdependent factors (e.g., knowledge, control, beliefs, and
sociocultural contexts) that overlap and interact in a variety of ways. More
recent studies have cited planning and monitoring as key discriminators in
problem-solving success (Schoenfeld, 1992; DeFranco, 1996; Geiger and
Galbraith, 1998; Carlson, 1999a). Other studies have revealed the influ-
ence of various affective dimensions (e.g., beliefs, attitudes, and emotions)
on the problem-solving process. Although many studies have investigated
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and compared the characteristics of novice and expert problem solvers
(e.g., Krutetskii, 1969; Lesh and Akerstrom, 1982; Lesh, 1985; Schoenfeld,
1985a, 1989; Geiger and Galbraith, 1998; Stillman and Galbraith, 1998),
many aspects of the problem-solving process still do not appear to be
understood. While the literature supports that control and metacognition
are important for problem-solving success, more information is needed to
understand how these behaviors are manifested during problem solving,
and how they interact with other problem-solving attributes reported to
influence the problem-solving process (e.g., resources, heuristics, affect).

Building on the existing body of literature, we focused our study on
gaining new information about the interaction of major aspects of problem
solving that have been identified as important for problem-solving success.
In doing so, we wanted to gain a better understanding of the cognitive and
metacognitive processes involved in problem solving, and to acquire more
specific information about the major problem-solving attributes that have
been reported to influence the problem-solving process. We also wanted to
bring improved clarity and coherence to the body of problem-solving litera-
ture. We thus began by developing a broad taxonomy to characterize major
problem-solving attributes. As our principal method of data collection, we
elected to investigate the behaviors of 12 experienced problem solvers, all
mathematicians, while they worked through four mathematics problems.
Our initial analysis revealed that our taxonomy was limited in its ability
to characterize some of the critical behaviors being exhibited by the math-
ematicians in our study. We then reanalyzed the data using a grounded
approach. This paper describes the emergence of our Multidimensional
Problem-Solving Framework and reports the major findings from our study.

2. BACKGROUND

2.1. What is a mathematics problem?

Early studies (1970–1982) in problem solving were concerned with deter-
mining the aspects of a task or problem that contributed to its difficulty
level (Lester, 1994), while more recent research has had a different focus.
“Today there is general agreement that problem difficulty is not so much
a function of various task variables as it is the characteristics of the prob-
lem solver” (Lester, 1994). This view was echoed by Geiger and Galbraith
(1998) who claimed, “it is the relationship between the learner and a prob-
lem that is of significance, not the perceived level of the problem as viewed
within some hierarchy of abstraction.”

Our view of a mathematics problem and the notion of problem solving
includes problems at all levels in any mathematical context. We do not
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restrict mathematical problems or the notion of problem solving to work
on a specific class of problems that are encountered in a problem-solving
course. Rather, based on Schoenfeld’s definition of a problem, we regard
problem solving as including situations in which an individual is responding
to a problem that he or she does not know how to solve “comfortably” with
routine or familiar procedures:

A problem is only a problem (as mathematicians use the word) if you don’t know
how to go about solving it. A problem that has no ‘surprises’ in store, and can be
solved comfortably by routine or familiar procedures (no matter how difficult!) is
an exercise. (Schoenfeld, 1983, p. 41)

2.2. Phases of the problem-solving process

In his renowned publication How to Solve It, Pólya (1957) suggested that
solving a problem involved: (i) understanding the problem; (ii) developing
a plan; (iii) carrying out the plan; and (iv) looking back. He described the
problem-solving process as a linear progression from one phase to the next
and advocated that when solving a problem,

[First,] we have to see clearly what is required. Second, we have to see how the var-
ious items are connected, how the unknown is linked to the data, in order to obtain
the idea of the solution, to make a plan. Third, we carry out our plan. Fourth, we look
back at the completed solution, we review it and discuss it. (Pólya, 1957, pp. 5–6)

Twenty-five years later, Garofalo and Lester described problem-solving
behavior as consisting of four phases of distinctly different metacognitive
activities: orientation, organization, execution, and verification. In describ-
ing their framework, Garofalo and Lester indicated that shifts from one
phase to the next commonly occurred when metacognitive decisions re-
sulted in some form of cognitive action.

2.3. How do experts behave?

Summarizing Schoenfeld’s work (Schoenfeld, 1985, 1987b), Lester (1994)
characterized “good” mathematical problem solvers as possessing more
knowledge, well-connected knowledge, and rich schemata. “They regu-
larly monitor and regulate their problem solving efforts,” Lester observes,
and “they tend to care about producing elegant solutions.” In addition, they
appear to have a high level of self-awareness of their strengths and weak-
nesses and tend to focus on the underlying structure and relationships in
the problem (Stillman and Galbraith, 1998). Good mathematical problem
solvers also exhibit flexibility during problem solving and tend to use pow-
erful content-related processes rather than general heuristics alone (Geiger
and Galbraith, 1998).
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2.4. The role of resources, heuristics, control, and affect

The literature on problem solving routinely describes resources as for-
mal and informal knowledge about the content domain, including facts,
definitions, algorithmic procedures, routine procedures, and relevant com-
petencies about rules of discourse (Pólya, 1957; Schoenfeld, 1989; Geiger
and Galbraith, 1998). The utility of a problem solver’s resources depend
on the factor of control: Many studies on problem solving have reported
that even when individuals appear to possess the resources to solve a par-
ticular problem, they often do not access those resources in the context of
producing a problem solution. In Schoenfeld’s words (1992), “It’s not just
what you know; it’s how, when, and whether you use it.”

Many researchers have joined Schoenfeld in illuminating the crucial
role that control plays in achieving problem-solving success (Schoenfeld,
1985a, 1992; DeFranco, 1996; Vinner, 1997; Carlson, 1999a). In a 1992
study, Schoenfeld noticed that undergraduate students who demonstrated
poor control were unlikely to notice when their efforts were unproductive.
In a study involving mathematicians, DeFranco (1996) reported that not
only was effective control a positive force for successful problem solvers,
control was either lacking in less successful subjects, or it acted as a neg-
ative force in their problem-solving efforts. In Vinner’s (1997) theoret-
ical framework for addressing pseudo-conceptual and pseudo-analytical
thought processes, he noted that students who showed evidence of pseudo
thought processes often lacked the control mechanisms that good problem
solvers possess. Evidence of pseudo thought processes includes behaviors
such as random associations, lack of validation efforts, and absence of
inquiry about meaning.

Metacognition has also been a focus of problem-solving studies (e.g.,
Lesh and Akerstrom, 1982; Schoenfeld, 1982; Silver, 1982; Lester et al.,
1989a) and has been defined to include knowledge about and monitoring
of one’s thought processes and control during problem solving. We note
that the terms control, metacognition, and monitoring have held varying
and overlapping meanings in the literature. Our initial taxonomy uses the
term control to encompass metacognition and monitoring and all associated
behaviors. Following Schoenfeld (1992, p. 355), we will use the term moni-
toring to mean the mental actions involved in reflecting on the effectiveness
of the problem-solving process and products. We also define self-regulation
to refer to the actions that are taken in response to assessments of “on-line”
progress.

Research has also substantiated that affective variables such as beliefs,
attitudes, and emotions have a powerful influence on the behavior of the
problem solver (Schoenfeld, 1989; Lester et al., 1989b; McLeod, 1992;
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DeBellis and Goldin, 1997). Although emotions are more evident than
beliefs during problem solving, beliefs (deep-seated convictions such as
“learning mathematics is mostly memorization”) also play an important
role (Schoenfeld, 1989, 1992; Carlson, 1999a, b). Schoenfeld claims that
purely cognitive behavior is rare, and that thinkers perform most intellectual
tasks within the context established by their perspectives on the nature of
those tasks. Belief systems, says Schoenfeld (1992), shape cognition and
determine the perspective with which one approaches mathematics and
mathematical tasks, and should therefore be included in any investigation
of why individuals succeed or fail in their attempts to solve mathematics
problems. In a 1999 study that investigated the background, beliefs, and
problem-solving behaviors of graduate students, Carlson found that effec-
tive problem solvers expressed beliefs that: doing mathematics requires
persistent pursuit of a solution; the solution process may require many in-
correct attempts; problems that involve mathematical reasoning are enjoy-
able; mathematical ideas should be understood instead of just memorized;
learning mathematics requires sorting out information on one’s own; and
verification is a natural part of the problem-solving process (pp. 254–255).

DeBellis and Goldin (1997) have focused their investigations on local
affective responses, described as the responses that occur during the process
of solving a problem. Local affect has been found to have an impact on both
cognitive processing (Hannula, 1999) and the construction of mathemati-
cal knowledge (DeBellis and Goldin, 1999). Both positive feelings, such
as satisfaction and pride, and negative emotions, such as anxiety and frus-
tration, are common, as local affect changes frequently during the process
of solving a problem. Local affective pathways of struggle, success, and
elation typically lead to motivation and interest, whereas local pathways
of struggle, failure, and sadness typically lead to anxiety (Hannula, 1999).

Affective responses, however, are seen to be extremely complex, con-
sisting of much more than the expression of positive and negative feel-
ings or the exhibition of confidence. They entail structures of intimacy,
integrity, and meta-affect that promote deep mathematical inquiry and un-
derstanding. Complex networks of affective pathways both contribute to
and detract from powerful mathematical problem-solving ability. Intimate
mathematical experiences generate bonding between the learner and her
mathematics. Such bonding has been characterized by behaviors such as
cradling one’s work in one’s hands or arms, or speaking passionately about
one’s mathematical products. High levels of intimacy have also been asso-
ciated with negative emotional responses, as exhibited by expressions of
anger or frustration. Mathematical integrity, another dimension of affect,
refers to an individual’s standards for validating that a solution is correct, a
problem is solved satisfactorily, or the learner’s understanding is sufficient.
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Mathematical integrity has also been described as an individual’s expres-
sion of honesty relative to his understanding of a solution. Mathematical
intimacy and integrity are seen to be reflexively related in that absence of
integrity raises an obstacle to intimacy, and absence of intimacy reduces
the individual’s need for integrity (DeBellis and Goldin, 1999).

3. THEORETICAL FRAMEWORK

Drawing from the large amount of literature related to problem solving,
we devised an initial taxonomy (Table I) that would allow us to charac-
terize the various problem-solving attributes that have been identified as
relevant for problem-solving success. The dimensions of the taxonomy are
resources, control, methods, heuristics, and affect. We define resources to
be the conceptual understandings, knowledge, facts, and procedures used
during problem solving. Control refers to the metacognitive behaviors and
global decisions that influence the solution path. This includes the selection
and implementation of resources and strategies, as well as behaviors that
determine the efficiency with which facts, techniques, and strategies are ex-
ploited (e.g., planning, monitoring, decision making, conscious metacog-
nitive acts). Motivated by our interest in gaining a better understanding
of control, and by calls for more work to investigate aspects of control in
problem solving, we categorized control into three sub-dimensions: initial
cognitive engagement, cognitive engagement during problem solving, and
metacognitive behaviors. Initial cognitive engagement includes activities
such as putting forth effort to read and understand the problem and estab-
lishing givens and goals. Cognitive engagement during problem solving
includes both attempts to fit new information with existing knowledge and
the construction of logically connected statements. Metacognitive behav-
iors include reflection on the efficiency and effectiveness of the cognitive
activities and subsequent self-regulatory behaviors.

The methods dimension of the taxonomy describes the general strategies
used when working a problem, while the heuristics dimension describes
more specific procedures and approaches. The affective dimension includes
attitudes, beliefs, emotions, and values/ethics (including mathematical in-
tegrity and mathematical intimacy as described above). Since our original
intention was to use the taxonomy as a coding scheme, we assigned each
attribute a two- or three-letter coding label. The taxonomy guided the ma-
jor design decisions for our study, including the selection of the interview
tasks, interview protocol, and plans for our data analysis. It also served
as our initial lens for coding our data and identifying the behaviors that
were exhibited. However, our initial analysis using our problem-solving
taxonomy revealed that it was limited in its ability to characterize some of
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TABLE I
Initial Problem-Solving Taxonomy

Resources
RK Knowledge, facts, and procedures
RC Conceptual understandings
RT Technology
RW Written materials

Control
CP Initial Cognitive Engagement

CPE Effort is put forth to read and understand the problem
CPO Information is organized
CPG Goals and givens are established and represented
CPS Strategies and tools are devised, considered, and selected

CE Cognitive Engagement During Problem Solving
CES Evidence of sense making
CEM Effort is put forth to stay mentally engaged
CEL Effort is put forth to construct logically connected statements

CM Metacognitive Behaviors During Problem Solving
CMQ Reflects on the efficiency and effectiveness of cognitive activities
CMM Reflects on the efficiency and effectiveness of the selected methods
CMC Exerts conscious effort to access resources/mathematical knowledge
CMG Generates conjectures
CMV Verifies processes and results
CMR Relates problem to parallel problem
CMP Refines, revises, or abandons plans as a result of solution process
CME Manages emotional responses to the problem-solving situation
CMI Engages in internal dialogue

Methods
MT Constructs new statements and ideas
MC Carries out computations
MR Accesses resources

Heuristics Uses heuristics during the problem-solving process (e.g., HW: Works back-
wards; HO: Observes symmetries; HS: Substitutes numbers; HR: Represents
situation with a picture, graph, or table; HC: Relaxes constraints; HD: Sub-
divides the problem; HA: Assimilates parts into whole; HL: Alters the given
problem so that it is easier; HE: Looks for a counter example; HI: investigates
boundary values)

Affect
AA Attitudes AB Beliefs
AAE Enjoyment ABC Self-confidence
AAM Motivation ABE Pride
AAI Interest ABP Persistence

ABM Multiple attempts are needed
in problem solving

AE Emotions AV Values/Ethics
AEF Frustration AVI Mathematical intimacy
AEA Anxiety AVG Mathematical integrity
AEJ Joy, pleasure
AEI Impatience, anger
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the problem-solving behaviors we were observing—e.g., the interactions
between the various elements in the taxonomy. (We describe this finding
in more detail in Section 4.2.)

4. THE STUDY

4.1. Methods

The subjects for this study were eight research mathematicians (all male)
and four Ph.D. candidates (three male and one female) from two large
public universities in the southwestern and western United States. The
four Ph.D. candidates completed their degrees soon after participating
in this study, so we refer to the subjects collectively as mathematicians
or experienced problem solvers. We chose to work with mathematicians
because we hypothesized that by observing individuals with a broad, deep
knowledge base and extensive problem-solving experience, we would
learn more about the problem-solving process and interactions of various
problem-solving attributes (e.g., cognitive processes, metacognitive
behaviors, and affective responses).

The mathematicians were asked to complete four (of five) problems
that required knowledge of foundational content and concepts such as
basic geometry, algebra, and proportions. The problems were selected
because: (i) they were challenging enough to engage a research math-
ematician, yet required fundamental mathematical concepts and knowl-
edge that is accessible to any mathematician, regardless of the area of
specialization; (ii) the nature of the problem would produce a variety
of solution paths, thus eliciting various metacognitive and cognitive be-
haviors and prolonged engagement during the solution process; and (iii)
the problems were sufficiently complex to lead to dead ends and elicit
strong affective responses. These problems (Appendix I) did, in fact, af-
ford us the opportunity to witness a variety of cognitive and metacogni-
tive behaviors and affective responses. Problems 2 and 3 were especially
illuminating.

Each subject was interviewed separately by one of the authors. At the
start of the session, the interviewer asked the mathematician to verbalize
his thought processes as he completed the problems (Appendix I). The in-
terviewer observed the subject’s behaviors and also periodically reminded
the solver to verbalize his thinking and articulate a rationale for specific
behaviors. The interviewer gave no indication regarding the correctness of
the solution. The interviews were audio-taped and later transcribed. The
amount of time required to complete each problem varied across mathe-
maticians and across problems, with completion of each problem varying
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from about 10 to 45 minutes. (We also note that completion of a problem
did not always result in a correct solution.)

4.2. Data analysis

In the first pass through the transcribed interviews, we coded the data us-
ing the initial problem-solving taxonomy (Table I). This coding, although
effective for identifying, labeling, and classifying various problem-solving
attributes in our data, did not fully explain the reasoning patterns and inter-
actions that we were observing. In particular, we noticed that our framework
was limited in its ability to characterize specific interactions between the
problem-solving process and aspects of the subjects’ cognitive processes,
metacognitive behaviors, and affective responses. As a result, our next at-
tempt to analyze the data involved a grounded approach, employing open
coding techniques (Strauss and Corbin, 1990).

Both researchers analyzed the transcripts independently to ascertain the
mathematical thinking and behaviors exhibited, while attempting to iden-
tify emerging trends in the problem-solving process (see Tables III–VI;
Column 2). It was in this phase of the analysis that we first became aware
of a recurring pattern of strategies and conjecture, followed by computa-
tions, checking, and a decision (Figure 1). We also noticed that a second
type of cyclic reasoning was being exhibited when the mathematician was
considering the viability of various solution approaches. The patterns that
we observed guided a more fine-grained analysis of the cycles. This analysis
resulted in our classifying the four major phases that these mathematicians
moved through when completing a problem as: orienting, planning, exe-
cuting, and checking (Tables III–VI; Column 3). We observed that once
the mathematicians oriented themselves to the problem space, the plan–
execute–check cycle was then repeated throughout the remainder of the
solution process. We also noticed that, when contemplating various solu-
tion approaches during the planning phase of the problem-solving process,
the mathematicians were at times engaged in a conjecture – imagine – verify
cycle (Figure 1).

In the next stage of our data analysis, we negotiated the nuances of
characterizing the phases of the cycles. We also attempted to better un-
derstand the nature of the cognitive and metacognitive processes and their
interaction with other aspects of problem solving defined in our initial
taxonomy. Interview transcripts of the solvers’ problem-solving sessions
were scrutinized to identify uses and effects of heuristics, resources, ac-
tions of control, and various affective responses (using the coding from
our initial framework as appropriate). Original audio-recordings were re-
visited for expressions of anger, anxiety, frustration, pleasure, and other
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Figure 1. The Problem-Solving Cycle.

emotional responses. We also reviewed all coded transcripts to identify
and characterize the most common ways that resources, heuristics, affect,
and control were exhibited during each of the problem-solving phases. It
was at this point that we also noticed patterns in how different control mech-
anisms were used during problem solving. In particular, we noticed that
the mathematicians monitored their thought processes and products regu-
larly during all four problem-solving phases, although the specific nature
of what was monitored varied from phase to phase. We also observed that
strategic control behaviors such as accessing knowledge, managing emo-
tional responses, and verifying processes and results (CMC, CME, CMV
in our original taxonomy) were behaviors that were exhibited during spe-
cific phases. We further observed that these behaviors, reasoning patterns,
and knowledge influenced the mathematicians’ problem-solving success.
To make this distinction in our reporting we will refer to monitoring as
reflection on and regulation of one’s thought processes and products at any
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point in the solution process. All other control behaviors defined in our
original taxonomy will be referred to as strategic control. What emerged
was a more structured, coherent, and descriptive characterization of the in-
terplay between the problem-solving phases, cycling, and problem-solving
attributes. We illustrate this characterization in the form of a multidimen-
sional problem-solving framework (Table VII).

5. RESULTS

In this section, we describe the problem-solving process and behaviors ex-
hibited by four mathematicians when completing the Paper-Folding Prob-
lem (Table II). We chose this problem because, of the problems used in
our study, it provided the richest exhibition of problem-solving behaviors.

TABLE II
The Paper-Folding Problem

A square piece of paper ABCD is white on the frontside and black on the backside and
has an area of 3 in2. Corner A is folded over to point A′ which lies on the diagonal
AC such that the total visible area is 1/2 white and 1/2 black. How far is A′ from
the fold line?

References to the interview transcript (noted with a numbered reference to
the specific excerpt) that support the observation are indicated. In addition,
we have included four coded transcripts (Tables III–VI) that illustrate the
labeling strategies we used to identify and characterize the problem-solving
behaviors. The first column of each table displays the transcription with
each expression referenced with a number. The second column contains the
labels (using the language of our original framework as appropriate) that
were most descriptive of the exhibited behaviors. The third column of each
table illustrates the four problem-solving phases that emerged subsequent
to our labeling the specific behaviors.

5.1. A description of Aaron’s solution

Aaron was able to orient himself to the problem space by reading through
the problem statement once (Table III, Excerpt 1). He initially conjectured
that he needed to find an area function (2, 3). As he continued to imagine
this conjecture playing out, he recognized that finding A′ would involve
finding the altitude of the triangle he formed by folding the paper over
(4). After some frustration and contemplation (5) he expressed awareness
that the triangle is a right triangle (6). He then reflected on this conjecture
by visualizing the triangle formed by folding the paper over. After mon-
itoring his thinking, he concluded that the right triangle also contained a
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TABLE III
Aaron’s transcription and coding

Excerpt Behavior Phase

(1) Reads problem. . . • Initial engagement Orienting
(2) So I’m probably going to try to do a

similar thing here.
• Strategy Planning
• Heuristic

(3) So I’m probably going to try to find an
area function, or a function for how far A′

is from the fold line.

• Conjecture

(4) It’s just the altitude of this triangle. Let
me draw you a picture. . . .try letting the
altitude of the black triangle be x .

• Mathematical knowledge
• Organizing and labeling

information
(5) See if I end up. . . (struggle, long pause) • Affect
(6) Then I guess we’re dealing with a right

angle triangle.
• Conjecture
• Mathematical knowledge

(7) So this is all black. So this angle will
always be. . . I just wanted to make sure
that I’m not making any implicit
assumption about the current position and
assume that we had a right triangle here,
but that’s always going to be a 45-degree
angle.

• Conjectures/imagines
transformation of triangle

• Accesses mathematical
knowledge

• Monitoring

(8) So this is. . . I’m not even sure that I need
these sides yet. I’m just trying to fill in
what I know. . .

• Organizing information

(9) et’s start with the area of the dark triangle.
The area of the little square is 2x squared.

• Conjectures/imagines
• Accesses mathematical

knowledge
(10) Wait. So here. . . 1

2 base is x squared. • Executes/verifies
(11) Now the area of the white triangle. . . well

this should be simple.
• Strategy
• Affect – Confidence

(12) It starts off with 3 and we’re subtracting
the area of the dark triangle. Actually the
square which would be 3 minus 2x
squared. (mumbling about squares). . . it
can’t be negative 1. Positive 1.

• Accesses mathematical
knowledge

Executing

• Executing

(13) And now I check to make sure that I
believe my answer, or that the answer
seems unreasonable in any way.

• Self monitoring

(14) Well it’s 1 inch. . . so it’s all right. Well, I
don’t see any reason why that’s not a
reasonable answer.

• Reflecting on process and
solution

Checking
Cycles forward

(15) In fact, I didn’t use that as much as I
could have. I was just noticing that to find
the area of the white. The whole area is
equal to 3, minus the dark and minus this
and this equal to that. If I would have
realized it that that meant given what we
are looking for just meant that the area of
the triangle had to be 1. . . that would have
been yet simpler.

• Reflecting on the problem
and his solution
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45-degree angle (7). He continued to contemplate the viability of his ap-
proach by reflecting on what he needed to do to move toward a solution
(8). After labeling the altitude of the triangle with an x , he verified that the
area of the black triangle is x2 (9, 10). This is correct based on his labeling;
however, he did not verbalize all of the thinking that allowed him to arrive
at this conclusion. His next expression (11), along with his following state-
ment (12), suggested that he quickly recognized that the area of the white
triangle could also be represented by x2. He proceeded to piece together
his knowledge and various deductions to conclude that 3 (the entire area)
minus 2x2 is equal to 1. He appeared to perform mental calculations prior
to concluding that x must be equal to 1 (the correct answer) (12). He then
reflected on the reasonableness of his answer and concluded that there were
no conflicts. (He appeared to test his deduction against his mathematical
knowledge and knowledge of the problem) (13, 14). His reflections on his
approach resulted in his concluding that, had he initially recognized that
the area of the triangle had to be equal to 1, he could have arrived at his
answer with a simpler approach (15).

5.2. A description of James’ solution

James’ initial engagement with the problem involved his reading the prob-
lem statement while attempting to make sense of it (Table IV, Excerpt 1).
Once he was able to picture the problem, he proceeded to construct a draw-
ing of the situation (he drew a square and labeled each side as having a
length of

√
3 [2]). After drawing an illustration of the folded paper, his ver-

balizations suggested that he was imagining the folding of corner A onto
the diagonal of the square (3). While appearing to transform the figure in
his mind, he conjectured 3

2 as the total area of the triangle formed by fold-
ing the corner (7, 8). He then reflected on the correctness of this statement
and concluded that his conjecture was incorrect. His reengagement with
the problem was illustrated by his restating of known facts (11) and draw-
ing the fold on his illustration. He then labeled each of the three pieces of
his figure with an A (i.e., each triangle formed by the fold and the strip
representing the difference of the original square and the square formed
by the fold). His calculations resulted in his conclusion that A = 1 (14).
After reestablishing known facts he again focused on his ultimate goal of
finding the distance of A′ from the fold (15). Using his knowledge of a 45–
90–45 triangle relationship, he concluded that the distance from the fold
was 1√

2
. He then reasoned that if x = 1

2 , the area of the square would be 1
4 ,

which he immediately rejected as incorrect (17, 18). He then made another
conjecture, which led to his conclusion that the area of the triangle is 1

2
(19, 20). After testing this conclusion against facts that he knew to be true,
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TABLE IV
James’ transcription and coding

Excerpt Behavior Phase

(1) Ok, a square piece of paper is white on
the front side and black on the backside
and has an area of 3 square inches.
Corner A is folded. . . so the total visible
area is half white and half black. How far
is A from the fold line?

• Initial engagement Orienting
• Sense making

(2) Ok, so each side is square root 3. • Sense making—organizing
information

• Mathematical knowledge
(3) And then fold it over, so that each of

these guys are the same,
• Heuristic—modeling

(4) So the total area here is 3
2 . • Conjecture Planning

(5) So, this is x and this is x , then this is x
squared over 2.

• Imagine, verify
• Strategizing
• Mathematical knowledge

(6) What’s that supposed to mean? • Monitoring progress—does
this make sense?

(7) Total area is 3. I fold it over so this is
half. And....the whole square is 3.

• Sense making

(8) I fold it in, so that is 3
2 . • Conjecture

(9) I don’t. . . oh (he then draws the fold on
the paper and labels the sides of the
smaller square x and labels the point A′

on the diagonal).

• Testing conjecture Executing
• Monitoring quality of

thinking

(10) I’m sorry, that’s not correct. It’s not 3
2 . • Rejecting conjecture Checking

Cycles back
(11) This area is A, this area is A, and that area

out there is supposed to be A (gesturing
towards figures on his diagram).

• Reengagement Planning

• Conjecturing
(12) So, we’re supposed to have half white

and half black.
• Sense making
• Conjecture/imagine/verify

(13) So, this area x squared is 2A (pointing to
sketch).

• Strategy

(14) 2A plus A is 3A. So, A is going to be 1.
So, x squared is 1

2 . . .
• Executing strategy Executing

(15) How far is A′ from the fold line, so I want
from A′ to the fold line. . .

• Monitoring progress

(16) So, x is 1 over the square root of 2. And
then, that is that divided by that, so you
have. . . ..1 over the square root of 2
divided by the square root of 2 is 1

2 . . .

• Executing strategy
• Mathematical knowledge

(17) let me check this and make sure. . . so if x
is 1 over the square root of 2, this area is
1
4 (pointing to the area of the triangle
formed from folding corner A over to A′).

• Verifying work Checking
Cycles back• Mathematical knowledge

(18) No, • Rejecting solution
• Mathematical knowledge

(Continued on next page)
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TABLE IV
(Continued )

Excerpt Behavior Phase

(19) that is, is 1
2 . . . • New conjecture Planning

(20) 1
2 . . .That’s 1

2 , that’s 1
2 , that’s 1

2 , so that’s 1
4

so this area would be 1
2 .

• Imagine conjecture
unfolding;

Executing

• Tests conjecture
(21) No! • Rejects conjecture Checking

Cycles back• Affect— Frustration,
impatience

(22) What am I doing wrong? • Reflects on thinking
• Affect—Pride, ego,

frustration
(23) Ok, a square piece of paper is white on the

front side and black on the backside has an
area of 3 square inches. Corner A is
folded. . . so the total visible area is half
white and half black. How far is A from
the fold line?

• Reengages with problem
text

Planning

(24) What am I, • Conjecture
(25) You can’t. . . • Tests conjecture Executing
(26) (pushes paper aside). • Rejects conjecture Checking

Cycles back• Affect — Frustration
(27) There’s nothing wrong with my brain, it’s

my calculations.
• Affect—aha! Planning

(28) The total area is 3. That’s the total...Yes • Sense making
(29) Now I fold it and then this area, which is

black, is the same as this area. So, this is
some area A.

• Heuristic — modeling the
problem

(30) And that’s A. That area is the same as this
area. This is the lost area.

• Sense making

(31) So, 3A equals 3. The area is 1. • Conjecture
(32) So, I want the area of this animal here to

be 1.
• New strategy

(33) So, if that’s x and that’s x , the area of the
whole square is 2...x is the square root. . .

• Executing strategy Executing
• Mathematical knowledge

(34) That makes much more sense. . . • Self-monitoring
(35) So this one I can do in my head. . . • Affect—Ego/Pride
(36) Let’s see . . . if that’s 1 and that’s 1, that’s

1
2 , that’s 1

2 and that’s 1 that’s 1 that’s 1.
• Executing

(37) So, it’s, and the answer was how far is A′

from the fold line, so I take it by that you
mean this line and that distance is 1.

• Verifying solution Checking
Completion

(38) Sloppy calculations. . . • Affect—embarrassment

he rejected this conjecture (21). After reflecting on his process (22), he
again reengaged by rereading the problem (23) and making another con-
jecture that he quickly rejected (24, 25). His reengagement again resulted
in his attempt to make sense of the problem and reestablish known facts
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(26–30). This was followed by his stating confidently that the area of the
black triangle (backside of what is folded over) is 1 (31). After reestablish-
ing that the side of the smaller square is x , and observing that the area of this
square is 2, he concluded (by drawing on his knowledge of the relationship
between the area and side of a square) that the length of x must be equal
to

√
2 (32, 33). He then reflected on the reasonability of his conjecture and

expressed that he believed it was correct (34). After expressing that the
last few calculations would be trivial (35), his final mental computations
resulted in his correctly concluding that the distance from A′ to the fold
is 1 (36). His final step involved verification that his answer satisfied the
original question that was posed (37).

5.3. A description of Marco’s solution

Marco initially read the problem and made multiple attempts to make
sense of the given information and the statement of the question (Table V,
Excerpts 1–5). In addition to drawing a picture, he constructed a square
from a piece of paper and folded the upper left-hand corner over and slid the
corner of the paper along the diagonal (Excerpt 6). (His behavior and com-
ments suggested that he was trying to estimate what fold would generate
equal areas.) Following his initial efforts to orient himself to the problem,
he stated various conjectures regarding possible solution approaches.
These conjectures marked the first of several plan–execute–check cycles the
interviewer observed in Marco’s solution process. After each conjecture,

TABLE V
Marco’s transcription and coding

Excerpt Behavior Phase

(1) Let’s see, A square piece of paper is white on
the front and black on the back and has an area
of 3 square inches.

• Reads problem Orienting

(2) (He draws the square and labels on each side.) • Sketches a diagram
(heuristic)

• Mathematical
knowledge

(3) OK, now corner A is folded over to point A′

which lies on the diagonal AC (he pauses and
labels the corner A, B, C, D). . .

• Organizes information

(4) Such that the total visible area is 1
2 white and

1
2 black. How far is A′ from the fold line?

• Continues to read
problem

(5) (He then reads the problem a second
time—this time even more slowly and
carefully, emphasizing relevant information.)

• Continues to read
problem

(Continued on next page)
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TABLE V
(Continued )

Excerpt Behavior Phase

(6) (He went back to the picture and redrew it;
then he pulled out a piece of paper and
constructed a square and shaded the back
with his pencil; he then proceeded to fold
it along the diagonal, so that the corner
labeled A was folded over; he then slid the
corner up and down the diagonal until he
finally settled on a point that appeared to
meet the requirements of the problem (the
area was 1

2 black and 1
2 white.) (long

pause) Is this where they are equal?

• Models the problem
(heuristic)

Planning

• Conjecture-imagine-
evaluate

(7) So, let me begin by playing real dumb. . . • Affect—Pride/Ego
(8) It looks like one of those problems if you

label everything and crunch numbers,
probably you’ll get an answer (pause). . .

• Conjecture/classifies
problem

(9) Also, it looks like one of those problems
where there is maybe some slick way of
figuring out. . .

• Aesthetic concern

(10) using what we know about the sides of a
45-45-90 triangle and the relationship of
the triangle and the strip (long pause). . .

• Mathematical
knowledge

• Conjecture/imagine
(11) But, I’m not going to do that. • Rejects conjecture
(12) I’m going to look for the ugly solution

(pause). . .
• Aesthetic concern

(13) I can’t think of any slick way to do it, so
I’m going to just figure out where the
areas are equal.

• Affect—Pride/Ego
• Strategy

(14) The whole thing is 3 square inches, so it
has to be

√
3 ± x on a side and because

this is a square, this also has to be
√

3 − x
(cradles work). . .

• Executing strategy Executing
• Expression of intimacy

(15) So that triangle is going to be half of the
square, so that’s x2

2 and this strip is going
to be 3 minus the square that got cut off
which is x2,

• Accesses
mathematical
knowledge

• Executing strategy
(16) So 3 – x2 has to be equal to

So. . . computing, you get. . .
• Executing strategy

(17) Now, does that make any sense? • Monitoring
(18) Now, if we plug numbers back in just to

check. The triangle would be. . .
• Checking

reasonableness
of the solution

Checking
Cycles forward

(19) So, how does this help me? • Monitoring
(20) Now, I need to go back and find the length

of the piece of the triangle so I know how
far it is from the fold line.

• Strategy Planning

(21) I guess I can. . . • Monitoring
(22) et me see, will the properties of right

triangles help?
• Conjecture
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Marco was typically silent for a short period during which he appeared
(based on the comments and actions that followed) to be considering how
the conjectured solution would play out (8–12). Once he decided on a strat-
egy, he appeared to draw on his knowledge of basic geometric properties
to determine how to algebraically express the areas of the two equal figures
(13–15). He then performed computations to generate a solution that he
subsequently checked (16–18). After completing the verification, he carried
the newly generated information forward as he began the plan–execute–
check cycle again (20–22). Marco worked on this problem for about 15
more minutes, but was never able to resolve the computational conflicts
that he encountered. His decision to move on was based upon his expressed
desire to attempt the other problems in the restricted time frame of the
interview.

The forgoing transcripts from the Paper-Folding Problem sessions re-
flect the general patterns we found throughout our interviews with the
mathematicians. After coding the collection of interview transcripts from
all 12 mathematicians for all problems, we recognized that, although the
solvers’ specific paths in arriving at an answer were unique—as exempli-
fied above—their general problem-solving approaches were surprisingly
consistent. Encouraged by this result, we continued our search for patterns
in the coding. At this point we also observed that as the mathematicians
moved toward a solution, four distinct phases (characterized by distinct
shifts in the mathematicians’ cognitive behaviors) uniformly surfaced in
their problem-solving processes (Tables III–V; Column 3). We have labeled
these four phases as orienting, planning, executing, and checking.

6. AN EMERGING FRAMEWORK

During the orienting phase, the predominant behaviors of sense making,
organizing, and constructing were identified. Although the length of time
needed to complete this phase varied from mathematician to mathemati-
cian, they were all remarkably efficient in constructing either a picture or
a mental image of the problem situation as they attempted to make sense
of the question. Some specific behaviors that were commonly exhibited
during the orienting phase included defining unknowns, sketching a graph,
constructing a table, etc. These behaviors were typically accompanied by
intense cognitive engagement, as exhibited in the subjects’ focused move-
ment toward the construction of a personal representation of the problem
situation.

During the planning phase, the mathematicians initially devised con-
jectures about a viable solution approach. They appeared to contemplate
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various solution approaches by imagining the playing-out of each approach,
while considering the use of various strategies and tools. The sequence of
behaviors that were exhibited included (a) the construction of a conjecture;
(b) either the verbalization of a solution approach or silence, with the sub-
ject appearing to imagine how the solution approach would play out; and
(c) evaluation of the viability of the conjectured approach. After complet-
ing each sub-cycle the mathematician returned to the planning phase until a
solution approach was selected. This analysis also revealed that reflections
on and decisions about the general problem solving approach typically oc-
curred just before the mathematician entered the executing phase of the
problem-solving process (e.g., Table V, Line 13).

During the executing phase, the mathematicians predominantly engaged
in behaviors that involved making constructions and carrying out com-
putations. Some specific behaviors included writing logically connected
mathematical statements, accessing resources (including conceptual and
factual knowledge), executing strategies and procedures, and carrying out
computations.

During the checking phase, the subjects shifted to verification behaviors
as they spontaneously assessed the correctness of their computations and
results. Their exhibited behaviors included spoken reflections about the rea-
sonableness of the solution and written computations. We also witnessed
the mathematicians contemplating whether to accept the result and move to
the next phase of the solution, or reject the result and cycle back. These deci-
sions were exhibited prior to their moving to a new problem-solving cycle.

It is important to note that the mathematicians rarely solved a prob-
lem by working through it in linear fashion. These experienced problem
solvers typically cycled through the plan–execute–check cycle multiple
times when attempting one problem (Figure 1). Sometimes this cycle was
slow and tedious; at other times the solver appeared to move through the
cycle with little effort. When the checking phase resulted in a rejection
of the solution, the solver returned to the planning phase and repeated the
cycle (Figure 1). When the checking resulted in an acceptance of the solu-
tion, the subject continued to another plan–execute–check cycle until the
problem was completed.

The plan–execute–check cycle involved a deliberate and complete ex-
ecution, usually produced by writing, and a more formal checking that
included written computations and calculations. In contrast, the conjec-
ture – imagine–evaluate sub-cycle of the planning phase often involved no
writing and either an acceptance or rejection of an approach without any
visible verification. The act of conjecturing typically involved the subject
imagining or stating a hypothetical solution approach. This was followed
by the subject either verbally or silently playing the solution out in her
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mind, as evidenced by her utterances or behaviors following brief periods
of silence (for example, refer to Table V, Excerpt 6). At some point while
imagining the playing-out of the solution, the individual evaluated if the
solution approach was viable. If the conjectured solution approach was
seen as potentially productive, the mathematician moved to the next phase;
otherwise the conjecture–imagine–evaluate sub-cycle was repeated until a
viable solution path was identified (Figure 1).

In addition to making decisions about their solution approaches, the
mathematicians regularly engaged in metacognitive behaviors that in-
volved reflecting on the effectiveness and efficiency of their decisions and
actions. These reflections were exhibited frequently during each of the four
problem-solving phases, and they appeared to move the mathematicians’
thinking and products in generally productive directions. These reflective
behaviors included pauses in the executing phase to determine the reason-
ableness of the constructions (i.e., whether the emerging results fit with the
mathematicians’ current knowledge and understandings) and reflections
about whether the approach was productive (e.g., Is this approach get-
ting me anywhere? What does this tell me?). The mathematicians tended
to act on their monitoring in ways that moved them forward in the solu-
tion process. In analyzing the transcripts further, we recognized that the
metacognitive acts within each problem-solving phase were best charac-
terized as acts of monitoring (e.g., reflection on one’s thought processes
and products). We also saw that the specific monitoring behaviors some-
times influenced the mathematicians’ strategic control decisions, which
we can capture by examining their transcripts as they move through the
problem-solving cycles.

6.1. Uses of resources, heuristics, affect, and monitoring during
the problem-solving phases

After identifying the problem-solving phases and confirming the consis-
tency of the problem-solving cycle, we systematically examined the uses
of other attributes of problem solving (e.g., resources, heuristics, affect,
and monitoring) during each problem-solving phase. During this phase
of our data analysis, we labeled (highlighted in bold print in Table VI)
these attributes and looked for consistent uses of these attributes. This
involved our reanalyzing each coded transcript to identify common uses
of resources (knowledge, facts, and procedures) and heuristics (construct-
ing a diagram, attempting a parallel problem, etc.) and consistent displays
of affect (enjoyment, pride, frustration, and mathematical integrity) and
monitoring (reflections on the effectiveness and efficiency of the solution
process) for each problem-solving phase. In this examination, we noticed
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TABLE VI
Select excerpts from Fred’s transcription

Excerpt Behavior Phase

(7) . . . has an area of 3 square inches. . . so
each side of the square is root 3, cornering
this right here is gonna be the diagonal, is
root 6. Ok. . . .lies on the diagonal AC such
that the total visible area is half that. . .

• Organizing information Orienting
• Mathematical knowledge

(8) So, is it saying, may I ask you a question?
Is it saying that this area right here and
this area right here is all white. . .

• Sense making

(9) Ohhhh, I see. . . there ya go • Self-monitoring Planning
(10) Alright. Now we’re rocking. • Affect—aha, excitement
(11) Ok, so I’m gonna call this x . That means

that this distance right here is gonna be x
minus. . . it’s gonna be root 3
minus. . . . . . root 3 minus x . . . (long pause
as he performs calculations on paper). . .

• Organizing information Executing
• Sense making
• Mathematical knowledge

(12) So, what does that mean? • Monitoring—does this
make sense?

(13) That means that, this. . . . • Verification Checking
Cycles forward

(14) What do I know about that? • Monitoring—where
am I?

Planning

(15) This is root 3, this is root 3. How am I
gonna find this? (pause)

• Reflecting on
information

• Mathematical knowledge
(16) Ok, start with something simpler. . . • Strategy

• Heuristic—look for a
simpler problem

(17) This distance right here is x. . . that area
right here is x times root 3 and this area
right here is gonna be. . . this distance
is. . . that’s x . . . this right here is gonna be
root 3 minus x . . . that’s the area of the
white stuff.

• Reflecting on work so far Executing
• Organizing information
• Mathematical knowledge

(18) Such that the total visible area. . . • Revisits problem text Cycles forward
(no overt checking)

(19) And that’s gotta equal a half of what the
original was (long pause). . .

• Conjecture Planning
• Affect—hesitation

(20) Alright. Now, we’re rocking. • Affect—excitement
• Monitoring—where

am I?
(21) So this is 2 root 3x . . . squared (so 2, 3, 2

squared minus 2 root 3x plus root
3...solve this using quadratic formula
(gets out calculator). . . Ok, so all I do is I
graph this quadratic and I’m gonna find
what the roots are. . . so it looks like this
one is probably the right one.

• Executing Executing
• Mathematical Knowledge
• Heuristic, sketch a graph

(Continued on next page)
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TABLE VI
(Continued )

Excerpt Behavior Phase

(22) There’s another one over here, but it’s
gonna be too big

• Verification Checking
Cycles forward• Mathematical

knowledge
(23) So, let’s think. . . • Monitoring Planning
(24) How far is A from the folded line? • Revisits problem text
(25) Ha, so much more. • Affect—impatience
(26) So, let’s think. Is there a quick way to figure

this out? Or do I actually have to. . .
• Monitoring—where

am I?
• Heuristic—refers to

sketch
• Considers strategies

that the mathematicians consistently manifested these attributes within a
phase; we also saw that the use and interactions of the attributes between
phases were often distinct. We illustrate the product of this analysis in the
following excerpt from the transcript of Fred’s Paper-Folding Problem in-
terview. This coding makes explicit Fred’s use of specific mathematical
resources (7, 11, 15, 17, 21, 22) and heuristics (16, 21). It also illuminates
his expressions of affect (10, 19, 20, 25) and monitoring (9, 12, 14, 20,
23, 26).

When we applied this analysis to all the coded interviews, we found
consistent patterns in the mathematicians’ use of content knowledge,
heuristics, monitoring, and affect in each problem-solving phase. The
interactions we observed among these attributes led us to develop more de-
tailed descriptions of the role each major problem-solving attribute seems
to play in each problem-solving phase (Table VII, columns 2–5). These
observations grounded our development of the Multidimensional Problem-
Solving Framework, which we describe below.

6.2. The Multidimensional Problem-Solving Framework

The Multidimensional Problem-Solving Framework provides a detailed
characterization of phases and cycles that occurred consistently in the
problem-solving process, as well as the specific behaviors that our 12 math-
ematicians exhibited as they attempted to solve four mathematics problems.
The framework describes how resources and heuristics interacted with
the general behaviors exhibited during the four problem-solving phases
(orienting, planning, executing, and checking). It also characterizes how
monitoring and affect were expressed during each of the phases. The frame-
work further illustrates the cyclic nature of the problem-solving process
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and the points at which strategic control influenced the mathematicians’
problem-solving decisions and actions.

The general behaviors (e.g., sense making, organizing) appear directly
under the phase name (e.g., orienting) (Table VII). The cells to the right
contain a description of the primary role of four problem-solving attributes
(i.e., resources, heuristics, affect, and monitoring) during that problem-
solving phase.

During the orientation phase the mathematicians initially engaged in
intense efforts to make sense of the information in the problem. They
all displayed confidence, general curiosity, reflective behaviors (e.g.,
How should I represent this? What does this mean?), and high math-
ematical integrity; these qualities were all evident as they went about
constructing logical representations of the problem situation using dia-
grams, charts, tables, etc. As they did this, they spontaneously accessed
their concepts, facts, and algorithms as needed to represent the prob-
lem situation. Their constructions were also aided by heuristics such
as categorizing the problem as an X kind of problem and working
backwards.

During the planning phase the mathematicians were frequently observed
accessing conceptual knowledge and heuristics as a means of construct-
ing, imagining, and evaluating their conjectures. We also observed that
although they displayed negative emotional responses of frustration and
anxiety, their high confidence and effective coping mechanisms kept them
engaged and focused. Their ongoing monitoring of their strategies and
plans was exhibited when they verbalized questions about their expendi-
ture of mental resources (e.g., “What will happen if I try X?”). Our analysis
revealed that their frequent displays of self-talk that included verbalizations
of their conjectures, questions, and comments contributed to their efficient
movement toward a solution plan.

During the execution phase these mathematicians were also observed
accessing their conceptual knowledge, facts, and algorithms when con-
structing statements and carrying out computations. The efficiency and
effectiveness of their actions appeared to be strongly influenced by their
fluency in accessing a wide repertoire of heuristics, algorithms, and com-
putational approaches. The ongoing monitoring of their solution approach
kept their work moving in generally productive directions, and their strong
conceptual and procedural knowledge assured the effectiveness of their
monitoring. Their strong bond with the problem coincided with their
strong affective responses (e.g., frustration, anxiety, elation, and joy).
Their effective management of these affective responses, using a vari-
ety of defense and coping mechanisms, was instrumental in their per-
sisting toward a solution to the problem. In retrospect, our data also
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support that these mathematicians held beliefs that doing mathematics
requires sorting out information on one’s own, being persistent, and be-
ing willing to tolerate many false attempts to finally attain a correct
solution.

The checking phase again involved the mathematicians’ drawing on
their conceptual and procedural knowledge to verify the reasonableness of
their results and the correctness of their computations. During this stage
intense negative affective responses sometimes resulted in their setting the
problem aside. Their monitoring took the form of their reflecting on the
quality of their processes (e.g., verification strategies) and products (e.g.,
correctness of their solution).

7. CONCLUDING REMARKS

This study has contributed new insights into the problem-solving process
by offering a multidimensional framework to be used for investigating, an-
alyzing, and explaining mathematical behavior. Our framework includes
four phases with two embedded cycles and provides detailed characteri-
zations of how resources, affect, heuristics, and monitoring influence the
solution path of the solver.

Orchestrating the many facets of problem solving when confronting
a novel problem may be as complex as skiing off-course down a steep
and slippery slope. In one split second as she pushes off, the skier ana-
lyzes the possible paths before her, assaying factors such as moguls, slope,
snow conditions, and her own skills and limitations. With little hesita-
tion, she accesses a vast reservoir of techniques, knowledge, and past ex-
periences to imagine the moves required to navigate each possible path,
and – employing transformational reasoning – assesses the likely outcome
of selecting each one. So too with our mathematicians: their ability to
play out possible solution paths to explore the viability of different ap-
proaches appears to have contributed significantly to their efficient and
effective decision making and resultant problem-solving success. It is pre-
cisely this sort of thinking that we refer to as transformational reason-
ing, as described by Simon (1999); we note that the thinking we have
described has similarities to what Mason and Spencer (1999) speak of
as “knowing to act in the moment.” Fundamental to “knowing to act in
the moment” is the use of mental imagery to imagine a future situation.
Further explorations of these reasoning patterns in problem solving are
needed.

Our study also exposed the central role of well-connected concep-
tual knowledge in the problem-solving process. Although past studies
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have identified metacognitive control as a primary attribute affecting an
individual’s ability to access knowledge when needed (Schoenfeld, 1992;
DeFranco, 1996), previous studies have not provided a detailed characteri-
zation of the interplay between metacognition and conceptual knowledge.
Among the mathematicians we studied, well-connected conceptual knowl-
edge appears to have influenced all phases of the problem-solving process
(orientating, planning, executing, and verifying). Our results also support
that the ability to access useful mathematical knowledge at the right mo-
ment during each of the problem-solving phases is highly dependent on the
richness and connectedness of the individual’s conceptual knowledge. We
call for future work to investigate this claim.

Consistent with the findings of DeBellis (1998) and Hannula (1999),
the results of our study support the notion that local affective pathways
play a powerful role in the problem-solving process. Our findings suggest
that the effective management of frustration and anxiety, using a vari-
ety of coping mechanisms, was an important factor in these mathemati-
cians’ persistent pursuit of solutions to complex problems. We suggest
that future work investigate the role of these management behaviors in
students.

The multiple dimensions and diverse components of the MPS Frame-
work suggest that learning to become an effective problem solver requires
the development and coordination of a vast reservoir of reasoning patterns,
knowledge, and behaviors, and the effective management of both resources
and emotional responses that surface during the problem-solving process,
as well as a great deal of practice and experience. We suggest that future
research examine the longitudinal development of problem-solving behav-
iors in students, and we call for curriculum developers and instructors to
focus increased attention on promoting problem-solving behaviors in their
students.

We believe that our study has brought additional clarity to the problem-
solving process and has successfully consolidated much of the existing
body of the problem-solving literature. We hope that the insights that we
report may be useful for others’ attempts to promote effective problem-
solving behaviors in students. It is also our hope that both our find-
ings and the MPS Framework will be useful for future problem-solving
studies.
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APPENDIX I: INTERVIEW PROBLEMS

The Bottle Problem

Imagine this bottle filling with water. Construct a rough sketch of the
graph of the height as a function of the amount of water that is in the
bottle.

The Paper Folding Problem

A square piece of paper ABCD is white on the frontside and black on the
backside and has an area of 3 in.2 Corner A is folded over to point A′ which
lies on the diagonal AC such that the total visible area is 1/2 white and 1/2
black. How far is A′ from the fold line?

The Mirror Number Problem

Two numbers are “mirrors” if one can be obtained by reversing the order
of the digits (i.e., 123 and 321 are mirrors). Can you find: (a) Two mirrors
whose product is 9256? (b) Two mirrors whose sum is 8768?

The Pólya Problem

Each side of the figure below is of equal length. One can cut this figure
along a straight line into two pieces, then cut one of the pieces along a
straight line into two pieces. The resulting three pieces can be fit together
to make two identical side-by-side squares, that is a rectangle whose length
is twice its width. Find the two necessary cuts.
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The Car Problem

If 42% of all the vehicles on the road last year were sports-utility vehicles,
and 73% of all single car rollover accidents involved sports-utility vehicles,
how much more likely was it for a sports-utility vehicle to have such an
accident than another vehicle?

APPENDIX II: DECOMPOSITION OF THE PROBLEM-SOLVING CYCLE

Orienting—sense making, organizing, and constructing

Effort and energy is put forth to read and understand the problem.
Effort is put forth to make sense of information in a table, graph, diagram,

or text.
Information is organized.
Goals and given are established.
Goals and givens are represented by symbols, tables, and charts.
Diagrams are constructed.

Planning—conjecturing, imagining, and testing

Mathematical concepts, knowledge, and facts are accessed and considered.
Various solution approaches are considered.
A conjecture is formulated.
Various solution approaches are considered.
The unfolding of a solution approach(es) is(are) imagined.
An approach is determined.

Executing—computing and constructing

Selection and implementation of various procedures and heuristics.
Constructs logically connected mathematical statements.
Carries out computations.
Evidence of sense making/attempts to fit new information with existing

schemata.
Validity of conjecture is considered.

Checking—verifying

Results are tested for their reasonableness.
Decision is made about validity of answer.
The problem solver cycles back or cycles forward based on results from

checking.
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Monitoring

Considers the efficiency and effectiveness of the various methods.
Considers the efficiency and effectiveness of cognitive activities.
Effort is put forth to stay mentally engaged.
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