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1 Orienting to a Problem 

We ask readers to think about the context in Table 1 before beginning this chapter 
and reflect on the reasoning you use to conceptualize and represent the relationships 
you consider.

What did you think about or imagine when reading the text? Make a drawing to 
represent the situation, then use that drawing to describe how pairs of quantities, 
whose values vary, are related and change together. How many distances appear in 
the description? Try describing each distance so that it is clear which distance you 
are referencing. What details did you need in your descriptions? Which distances 
have a value that varies, and which distances have a fixed value (or measure)? Can 
you verbalize how the distance between the Tortoise and Hare changes during the 
race? How might you support students in being able to conceptualize, verbalize, and 
represent this relationship?
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Table 1 One version of the tortoise and hare task (Carlson et al., 2020, p. 17) 

A tortoise challenges a hare to a 100-m race and convinces the hare to give him a 60-m head 
start. They both are moving at a constant speed when the start gun is fired, with the hare running 
the entire race at a constant rate of 3.6 m/s and the tortoise moving at a constant rate of 0.4 m/s 
for the duration of the race

2 Introduction 

Thompson (2008a) argued that “in the United States, the vast majority of school 
students rarely experience a significant mathematical idea and certainly rarely expe-
rience reasoning with ideas” (p. 31) due to “a systemic, cultural inattention to mathe-
matical meaning and coherence” (2013, p. 57). Most U.S. students experience math-
ematics only as groups of procedures to memorize and employ (Boston & Wilhelm, 
2017; Hiebert et al., 2005; Hill, 2021; Jackson et al., 2015; Laursen, 2019; Litke, 
2020; Schmidt et al., 2005; Simon et al., 2000; Stigler et al., 1999; Stigler & Hiebert, 
2009; Thompson, 2008a, 2013). In such a setting, students typically do not develop 
mathematical practices that lead to fluency in solving novel problems; nor do they 
construct strong meanings for key ideas necessary for success in calculus and STEM 
fields. For example, early studies of students’ understanding of the function concept 
revealed weak meanings in students’ function conception (e.g., Monk, 1992; Sier-
pinska, 1992; Vinner & Dreyfus, 1989). Studies report that students view (i) a function 
graph as a picture of an event (Bell & Janvier, 1981; Carlson, 1998; Leinhardt et al., 
1990; Monk, 1992) or a static shape with specific properties (Carlson et al., 2002) and 
(ii) an algebraically defined function as a recipe for getting an answer (Breidenbach 
et al., 1992) or two expressions separated by an equal sign (Carlson, 1998). 

We call for curriculum designers, professional development leaders, course 
coordinators, and instructors to foster learning experiences that support students 
in developing productive ways of thinking and coherent mathematical meanings 
essential for understanding calculus and continuing in STEM fields. It is our goal 
that students become confident and competent mathematical thinkers and problem 
solvers. Our data supports that students who understand ideas and acquire habits of 
reasoning meaningfully will be better equipped to spontaneously engage in produc-
tive reasoning and access their knowledge when learning new ideas and solving 
problems. This perspective is aligned with Harel and Thompson’s call [as explained 
in Thompson et al. (2014)] for students to develop the “habitual anticipation of using 
specific meanings or ways of thinking in reasoning” (p. 13). For example, recent 
studies have identified ways of thinking that foster the emergence of function graphs 
as a record of a student’s conception of how the value of one quantity varies with 
the value of another (Carlson et al., 2002; Moore & Thompson, 2015) and function 
formulas as a record of how pairs of quantities’ values are related and vary together 
(Moore & Carlson, 2012; O’Bryan, 2020a; O’Bryan & Carlson, 2016). 

Our call for mathematics instructors to support students in using and trusting 
their thinking when attempting novel problems and learning new ideas echoes the
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current recommendations from professional organizations (e.g., American Mathe-
matical Association of Two-Year Colleges, 2018; National Governors Association 
Center for Best Practices, Council of Chief State School Officers, 2010; Winsløw,  
2021). However, even when targeted and sustained professional development training 
is available, and instructors use research- and inquiry-based materials, researchers 
report only minor shifts in most teachers’ instructional practices, with many instruc-
tors continuing to focus on lecture as a means of transmitting knowledge to students 
(e.g., Baş-Ader & Carlson, 2021; Jackson et al., 2015). Such teacher-centered instruc-
tion is not attentive to student thinking, nor does it reveal to teachers the variety of 
ways students are conceptualizing and reasoning about mathematical ideas. Under-
standing and assessing student progress in applying their reasoning has been shown to 
be valuable for informing teacher task selection, questions, and explanations. These 
decentering actions (Baş-Ader & Carlson, 2021; Piaget, 1955; Steffe & Thompson, 
2000; Teuscher et al., 2012) are a critical component of responsive teaching whereby 
instructors act in the moment and adapt their instruction by leveraging students’ 
thinking to successfully make progress toward a lesson’s learning goals. 

3 The Need for Conventions to Facilitate Changes 
in Pedagogy and Student Success 

Thompson and Carlson (2017) call for introductory undergraduate courses in math-
ematics to be alert to the static images many students possess for variables, function 
formulas, and graphs. They call for curriculum and instruction to reengage precal-
culus level students in trusting and using their reasoning to conceptualize quantities 
in a problem context, and then illustrate how a student’s image of how quantities 
are related can lead to constructing symbols and graphs that carry meaning for the 
one constructing them. However, during 15 years of working with and studying 
precalculus instructors in the Pathways Project, we rarely encountered an instructor 
who engaged in and valued pedagogical practices for supporting students’ devel-
opment of dynamic imagery related to function relationships and their representa-
tions. Most instructors have only experienced traditional curriculum in both their 
learning and teaching experiences. They need focused professional development to 
help them reconceptualize mathematical ideas they thought they understood and to 
reconceptualize effective teaching as focused on and affecting student thinking. 

We developed Pathways curriculum materials (Carlson & Oehrtman, 2010) to  
support instructors in fostering productive reasoning patterns in their students that 
research has revealed to be essential for students’ construction of meaningful function 
formulas (e.g. Moore & Carlson, 2012; Thompson, 1988, 1990, 1992) and graphs 
(e.g., Carlson et al., 2002; Moore & Thompson, 2015). These include specific support 
for: (i) conceptualizing and speaking about quantities and how their values vary 
together, (ii) representing how two quantities change together using a graph, and 
(iii) representing quantitative relationships with expressions and formulas. As we
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refined the Pathways course materials over time, we strove to design for coherence 
by emphasizing reasoning about and making connections between the three strands 
of school mathematics that prepare students for calculus: the mathematics of quantity, 
the mathematics of variation, and the mathematics of representational equivalence 
(Thompson, 2008a).1 We included problems, teacher notes, and other resources that 
we believed would help instructors engage students in constructing strong meanings 
for ideas from these strands in each lesson and support students in making connections 
between ideas across multiple strands. 

In scaling the use of the Pathways materials, however, we faced persistent 
challenges in shifting instructors’ pedagogical actions and perspectives on student 
learning to achieve our intended learning goals. Many instructors routinely missed 
opportunities to conceptualize how the ideas in each lesson were related to one of 
these three strands or make connections between ideas in different strands. This led 
us to reexamine the focus of our professional development training and to develop 
pedagogical conventions that we believed would support both instructor and student 
learning if enacted. We were also guided by Thompson’s (1990) elaboration of 
the role of quantitative reasoning in students’ construction of meaningful algebraic 
expressions. This led to our introducing instructional conventions over the course of 
15 years when working with instructors, including classroom observations, profes-
sional development workshops, preservice teacher courses, and training programs 
for graduate teaching assistants. For example, when students successfully reasoned 
about applied contexts, we noted instructor moves that supported students in orienting 
to the problem (Polya, 1957) and engaging in productive problem-solving behaviors 
(Carlson & Bloom, 2005). In contrast, when students struggled to make sense of 
ideas or problems, we noted pedagogical actions that were not taken that could have 
supported students in making sense of relationships in the problem. We also analyzed 
clinical interview data that suggested actions (such as drawing detailed diagrams) 
that led to students’ successfully conceptualizing quantitative relationships (Moore & 
Carlson, 2012).

1 Thompson (2008b) describes these strands as follows. The mathematics of quantity refers to 
how individuals conceptualize measurable attributes of a situation, create measurement schemes 
to quantify the attributes’ magnitudes, represent the quantities in various ways, and generalize 
aspects of these attributes. The mathematics of variation refers to how individuals imagine quantities 
with magnitudes that can vary, how they represent this variation in different ways, and how they 
draw inferences from noticing what in a relationship remains invariant as two quantities change 
in tandem. The mathematics of representational equivalence refers to how individuals think of 
arithmetic and, eventually, algebraic expressions non-computationally as “segues into structural 
properties of numbers and quantitative relationship[s]” (p. 7). These three strands are interrelated, 
and opportunities always exist to discuss elements of one strand even within contexts emphasizing 
another strand. For example, while supporting students in conceptualizing quantitative relationships 
in some given scenario it can be very natural to explore how two or more of the conceptualized 
quantities co-vary in tandem. Thompson states that “The three strands in interaction, each receiving 
appropriate emphasis, and always with the other two in the background, builds a foundation for 
algebraic reasoning that simultaneously builds a foundation for schemes of meanings that are crucial 
for understanding the calculus” (pp. 8–9). 
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Our observations revealed that even when teachers were committed to making 
their instruction more engaging and meaningful for students, they continued to rely 
on familiar instructional practices of providing vague explanations and showing 
students how to find answers. For students to build personal meanings for mathemat-
ical ideas requires that instructors create opportunities for them to construct these 
meanings and engage in productive habits of reasoning as often as possible (Harel, 
2008). Our attempts to support instructors in consistently engaging their students in 
meaningful mathematical activity that begins with their conceptualizing quantities 
and their relationships as a basis for their graphing and defining activities led to our 
introducing the instructional conventions described in this chapter. These conven-
tions include underlining phrases in a problem statement that describes quantities, 
precisely referencing quantities when speaking, constructing a drawing that depicts 
how quantities are related, physically tracking quantities as their values vary, etc. 
We introduce them to focus and structure student mathematical activity in support of 
their meaningful engagement in conceptualizing problems and learning new ideas. 

4 Elaborating Quantitative and Covariational Reasoning 

We adopt Thompson’s theory of quantitative reasoning to explicate the ways of 
thinking we desire students to construct. According to Thompson (1988, 1990, 1993, 
1994, 2011, 2012) quantitative reasoning is rooted in a disposition to conceptualize 
situations in terms of measurable attributes of objects and relationships among them. 
Quantitative reasoning then is a way of thinking about situations whereby an indi-
vidual conceptualizes measurable attributes of objects (quantities) and organizes 
relationships between these attributes to form a structured mental representation of 
the situation. Quantities are mental objects unique to an individual. The way an indi-
vidual conceptualizes a quantity and the set of quantities deemed relevant provides 
the space of implications for the reasoning an individual can engage in relative to 
a given situation (Smith & Thompson, 2007; Thompson, 1994). A key element of 
quantitative reasoning is quantification whereby an individual develops a method 
for reliably representing a conceptualized quantity’s magnitude with a numerical 
value (that is, its measure). The quantification process is critical for an individual to 
develop meaningful mathematical models because “[i]t is in the process of quanti-
fying a quality that it [the quality] becomes truly analyzed” (Thompson, 1990, p. 5).  
The nature of the conceptualized quantity matters a great deal in this process, as 
does the sophistication of the individual’s magnitude schemes (see Thompson et al. 
(2014) for a discussion of these ideas). For example, the quantity “distance between 
two people” can be quantified as a multiplicative comparison to some imagined unit 
(either a standard unit like “meter” or “inch”, or a nonstandard unit such as “length 
of the measurer’s foot” or “the length of the measurer’s pace”). Some quantities, 
however, such as the speed of a baseball pitch or the impact force of an automo-
bile striking another automobile arise via conceptualizing a quantitative operation, 
or a mental operation of comparison/coordination of other quantities the individual
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has already conceptualized (Thompson, 1990, 1994, 2011). The resulting quantity 
cannot be directly measured in the same way that “the distance between two people” 
can be directly measured. As a result, quantifying these more complex quantities 
requires a scheme dependent on the quantitative operations from which they arose 
(Johnson, 2015; Moore, 2010; Piaget, 1968; Schwartz, 1988; Simon & Placa, 2012; 
Thompson, 1990; Thompson et al., 2014). 

It is also important that students distinguish between quantities with a fixed magni-
tude and those with a magnitude that can vary. This distinction is key in conceptual-
izing mathematical models of a dynamic situation as representing the simultaneous 
covariation of two quantities’ values. An individual reasons covariationally when she 
envisions two quantities’ values varying in tandem (Carlson et al., 2002; Saldanha & 
Thompson, 1998; Thompson & Carlson, 2017), and holds in mind a sustained image 
of the two quantities’ values simultaneously (Saldanha & Thompson, 1998). 

Thompson’s (1988, 1990, 1993, 1994, 2011, 2012) theory of quantitative 
reasoning “is about a stratum of reasoning that lies beneath both applied arith-
metic and applied algebra. It is about people using ‘rigorously qualitative’ reasoning, 
where rigor derives from the intention to attend to the quantification of a situation’s 
qualities” (p. 3). The theory is most useful in considering how individuals come to 
understand quantifying qualities like heat, force, and torque—qualities that cannot 
be quantified via extensive measurement. However, for individuals to participate in 
quantifying and using this category of quantities in mathematical modeling they must 
begin by conceptualizing calculations, variables, and algebraic expressions as tools 
for representing the quantitative relationships they have conceptualized. 

Despite the body of research pointing to the essential role of quantitative and 
covariational reasoning in students’ mathematical development, there is a broad body 
of research in calculus learning that points to students’ failure to conceptualize quan-
tities, how they are related, and vary together as sources of challenges using calculus 
ideas to advance a problem’s solution (Bressoud et al., 2016; Byerley, 2019; Carlson, 
1998; Engelke, 2007; Mkhatshwa, 2020; Oehrtman, 2009; Thompson & Harel, 2021; 
Thompson, 1992; Zandieh, 2000). Our work in the Pathways Project focuses on oper-
ationalizing Thompson’s theory of quantitative reasoning so that students develop 
the beliefs, expectations, and ways of thinking necessary to participate in meaningful 
mathematical modeling for success in calculus and STEM fields. In later sections, we 
elaborate how these constructs informed our thinking and design of Pathways conven-
tions for supporting precalculus mathematics students’ engagement in quantitative 
and covariational reasoning. 

For now, we echo our claim that students’ ability to construct meaningful formulas 
and graphs rely on their using quantitative reasoning to build a structured mental 
model of quantities (measurable attributes of objects) within a situation. To make 
this claim more transparent, we ask you to revisit the Tortoise and Hare context and 
follow-up questions we presented at the beginning of this chapter. Consider again 
how the following contributed to your ability to describe how the distance between 
the Tortoise and Hare changed during the race: (i) your conception of the quantities 
described in the text, (ii) your conception of the quantities to be related and how they 
vary together; (iii) the clarity with which you conceptualized the quantities (e.g.,
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where a quantity’s measurement begins, the direction of the measurement), and (iv) 
the clarity with which you represented the quantities and their relationships in a 
drawing. 

Data from administering an item that presented the above context and asked 
students to define the Tortoise’s distance (in meters) ahead of the Hare in terms of 
the number of seconds since the start of the race revealed that very few of over 
1000 precalculus students were able to produce a correct answer. Further, data from 
administering the Mathematical Association of America’s Calculus Concept Readi-
ness (CCR) exam to 601 students from three different universities during their first 
week of calculus revealed widespread weaknesses in students’ ability to define func-
tion formulas and interpret function graphs. In addition, only 28% of these 601 
students selected the correct response (out of five multiple choice options) to an 
item that asked them to define the area A of a circle in terms of its circumference, 
C (Carlson et al., 2015). CCR data thus suggests widespread difficulties in students’ 
ability to define function formulas to relate two quantities whose values vary as they 
begin calculus. 

5 Speaking with Meaning: A Convention for Improving 
Instructors’ Communication 

Analysis of video data from instructors’ professional learning communities (PLCs) 
(also reported in Clark et al., 2008) showed instructors being imprecise in referencing 
quantities and saying what a variable, expression, graph, and function formula repre-
sented when communicating with each other. These instructors regularly made vague 
references to a volume, height, time, etc. without making clear what volume, height, 
or time they were considering. We also noticed a pervasive use of pronouns that 
made it difficult for other instructors to understand what the speaker was imag-
ining and conceptualizing when completing a problem. Their inability to be specific 
in describing and representing quantitative relationships appeared to reveal their 
weak conceptions and it was common for instructors to pretend to follow incoherent 
explanations resulting in meaningless exchanges among the instructors. 

After our pointing out the difficulties we were experiencing in following their 
explanations, we collectively negotiated a specific goal to speak more meaning-
fully when discussing ideas and problems during the PLCs. This led to the project 
leaders negotiating with the PLC members patterns of speaking that we conjec-
tured would improve communication about the mathematical ideas and how they 
are learned. We collectively decided to restrict the use of pronouns by requesting 
that all PLC members be precise in referencing the quantity they were imagining, 
including the direction of measurement, the starting point for the measurement, and 
the unit of measure. Our goal was to focus instructors’ attention on the coherence 
of their speaking and how they might be interpreted by others. We were hopeful 
that reflecting on these issues would motivate them to expend the mental energy to
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improve in their ability to speak with meaning. Since retrospective analysis of the 
PLC videos revealed that the instructors’ classroom explanations mirrored those they 
provided in the PLCs, we were hopeful that speaking with meaning would become 
normative within their classroom discussions as well. 

Our subsequent analysis of the PLC videos, after agreeing on conventions for 
speaking, revealed instructors gradually becoming more fluent in referencing quan-
tities and describing quantitative relationships. The instructors’ language steadily 
shifted (with consistent reinforcing) to their describing the quantity they were concep-
tualizing by stating what was being measured, the unit of measurement, the starting 
point for the measurement, and the direction of the measure (e.g., Juan’s distance 
in feet north of the stop sign). We further noticed that the instructors’ ability to 
precisely reference the quantities and describe how pairs of quantities are related 
was accompanied by improvements in the instructors’ ability to construct formulas 
and graphs that accurately represented the quantitative relationships described in 
a problem. When instructors expressed frustration while attempting to speak with 
meaning about a problem they were discussing, they typically had not taken time to 
conceptualize the quantities described in the problem context. 

As our work to support instructors in communicating their thinking to their peers 
continued, we gradually introduced other conventions for communication, including: 
(i) the speaker verbalizing her thinking and the rationale for her choices, rather than 
describing what she did to get an answer; (ii) all members of the PLC attempting 
to make sense of the thinking of the speaker, instead of only listening to the words 
being spoken; and (iii) all members of the PLC asking a question if something was 
unclear, instead of pretending to understand when they were unable to follow. We 
formalized the convention speaking with meaning as a research construct for our 
continued study by saying, 

An individual who is speaking with meaning provides conceptually based descriptions when 
communicating with others about solution approaches. The quantities and relationships 
between quantities in the problem context are described rather than only stating procedures 
or numerical calculations used to obtain an answer to a problem. Solution approaches are 
justified with logical and coherent arguments that have a conceptual rather than procedural 
basis. (Clark et al., 2008, p. 297) 

According to Yackel and Cobb (1996), considering how others might make sense 
of explanations requires a shift in perspective from only viewing explanations as 
something one gives or hears to making the explanations themselves an object of 
reflection. Thus, when one speaks, they concurrently imagine how their utterances 
might be interpreted. The capacity for an individual to anticipate how they might be 
interpreted has been termed decentering (Piaget, 1955; Steffe & Thompson, 2000). 
Our perspective on decentering is elaborated elsewhere (Baş-Ader & Carlson, 2021; 
Carlson et al., 2004; Teuscher et al., 2012), with these studies revealing that US 
secondary and university precalculus instructors are generally not oriented to making 
sense of students’ thinking or considering how their explanations might be interpreted 
by others. This finding is consistent with findings reported in international studies 
(e.g., TIMSS) and research on teaching (Baş-Ader & Carlson, 2021; Teuscher et al., 
2016; Thompson, 2013, 2016). As a result, our data and observations of the impact
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of instructors adopting the convention that a speaker speak with meaning and a 
listener’s attempt to make sense of another’s spoken words, revealed cognitive shifts 
in instructors’ conceptions, and substantial shifts in instructors’ conversation toward 
an improved understanding of each other’s perspective (Clark et al., 2008). 

We should note that in a few cases a PLC leader did not consistently model or 
reinforce speaking with meaning. The conversations and explanations in these PLCs 
did not shift to become more meaningful or coherent and instructors were observed 
agreeing with incorrect solutions and illogical explanations. According to Yackel 
and Cobb (1996), a sociomathematical norm refers to a normative behavior specific 
to mathematics, such as understanding what constitutes an acceptable mathematical 
solution or what counts as an acceptable mathematical behavior in a group setting. 
We reemphasize that the pattern of speaking with meaning as a new sociomathemat-
ical norm only became normative in settings where the PLC leader was consistent 
in modeling speaking with meaning and consistent in reinforcing speaking with 
meaning among the instructors. 

6 Scaling the Convention of Speaking with Meaning Across 
the Pathways Project 

After five years of research and development of Pathways interventions, the pre-
post-gains of student learning using both the validated PCA (Carlson et al., 2010) 
and Calculus Concept Readiness (CCR) exams (Carlson et al., 2015) were highly 
significant. The mean PCA scores ranged from 13.5 to 18 (out of 25), representing 
pre- post-gains of 5–9 points on average. At this stage of the Pathways project, 
we made the curricular materials and professional development available for other 
universities, creating an opportunity for us to continue documenting speaking patterns 
among new communities of Pathways users.2 The trends described previously among 
communities of new Pathways instructors, including using a single word to define a 
variable, providing calculational explanations, etc. were normative at the beginning 
of all 12 Pathways professional development workshops that proceeded a university 
deciding to adopt Pathways materials. In Table 2 we provide concrete examples of 
common speaking patterns and contrast vague speaking with what we considered to 
be speaking that is more meaningful.

2 Since our initial introduction of the term speaking with meaning, 11 new colleges/universities 
have participated in Pathways professional development. 



230 M. P. Carlson et al.

Table 2 Examples of speaking with meaning compared to statements that show an absence of 
speaking with meaning 

Speaking with meaning 

Absence of speaking with meanings Speaking with meaning 

• The graph of the car’s distance falls to the 
right 

• The car’s distance south of the stop sign (in 
feet) is decreasing as the number of seconds 
since the car started moving increases 

• f (7) is 20 tells me that when I plug in 7 I get 
20 

• Since  f (7) is equal to 20, the tank had 20 
gallons of water 7 min after the tank started 
draining 

• I multiplied 1.08 by $2000 to get my answer • Since the amount I must pay is 8% more than 
the price, the amount I must pay is 1.08 
times as large as $2000 

• 24 divided by 5 is 4.8 because 5 goes into 24 
4.8 times 

• Since I need to determine how many times as 
long 24 in. is as compared to 5 in., I must 
divide 24 by 5. My answer tells me that 24 
in. is 4.8 times as long as 5 in. 

• Since the graph curves up the distance is 
getting larger from 0 to 5 

• During the first 5 s of the race, the distance 
travelled by the runner over successive fixed 
amount of time increases. This also means 
that the runner is speeding up during the first 
5 s or the race 

6.1 Speaking with Meaning in Instruction and Curriculum 

We leveraged the insights from our study of PLCs (Clark et al., 2008) in our initial 
workshops with instructors preparing to use Pathways materials at a particular univer-
sity. In doing so, we consistently modeled speaking with meaning and asked for clar-
ification when workshop participants were unclear about what quantity they were 
referencing. Imprecise quantity references that failed to describe the starting point 
of the quantity’s measurement such as “time elapsed” or “hours passed” were called 
out for clarification (e.g., “the number of minutes since 9 am”, the number of seconds 
since the car left home). When a workshop participant used pronouns or made impre-
cise statements like, “its distance is getting closer” the workshop leader might ask 
questions like, “What is getting closer?” “What distance?” “Closer to what?”, hoping 
to raise the instructor’s awareness of the need to be more specific in describing the 
distance the instructor was imagining. Our persistent probing typically generated 
a response like, “the car’s distance north of the intersection is decreasing”. The 
reinforcement of speaking with meaning in the initial workshop made the criteria 
for speaking with meaning public among all workshop participants. It is also note-
worthy that workshop participants began to ask each other for clarification when 
speaking among themselves.3 The Pathways curriculum materials further supported

3 In universities where a commitment to speaking with meaning became a social mathematical norm 
and was highly valued by the local coordinator in our initial Pathways workshop, we have since 
documented the persistence of speaking with meaning in this local community of instructors. 
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an instructor’s shift to speak with meaning by providing open-ended questions, oppor-
tunities for students to select and clearly define variables of interest, and requests for 
students to explain and justify their reasoning. The instructor materials also provide 
detailed solutions and explanations that model speaking with meaning, giving instruc-
tors clear examples of the preciseness in speaking that is needed when responding 
to specific problems and questions. Our observations of Pathways instructors’ class-
rooms reveal gradual shifts in their effectiveness in using and reinforcing speaking 
with meaning with variation in their: (i) consistency in modeling speaking with 
meaning; (ii) commitment to making speaking with meaning a classroom conven-
tion all students adopt; and (iii) consistency in asking for clarification when a student 
produces vague descriptions and/or explanations. 

6.2 Emergent Shape Thinking and Conventions 
for Meaningful Graphing Activity 

Researchers have documented students’ impoverished conceptions of graphs, 
including their conceiving of a graph as a picture of an actual event (e.g., Bell & 
Janvier, 1981; Carlson, 1998; Kaput, 1992; Leinhardt et al., 1990; Monk, 1992). For 
example, Carlson (1998) reported that high performing precalculus students inter-
preted the speed-time graphs of two cars as the paths on which the cars were driving 
and the intersection of the two graphs as a collision location. In the same study she 
reported that high performing second semester calculus students could say nothing 
more detailed about a graph’s inflection point than it being the location on a graph 
where the graph changes concavity, and when pressed to explain what the concavity 
conveyed about the quantitative relationships they responded with comments about 
the curvature of the graph. In contrast, more recent studies have revealed five levels of 
student reasoning as they attempt to construct a graph of two quantities as their values 
varied together in a non-linear pattern (Carlson et al., 2002) and have demonstrated 
the utility of students’ graphing activities as emerging from their conceptualizing 
two quantities’ values varying in tandem while imagining how the two quantities’ 
values are changing together (e.g., Carlson et al., 2002; Moore & Thompson, 2015). 

Moore and Thompson (2015) classified and contrasted students’ ways of thinking 
about graphs in terms of the thinking they used to construct the graph. They say that 
a student is engaging in static shape thinking if the student conceptualizes the “graph 
as an object in and of itself, and as having properties that the student associates with 
learned facts.” For example, a student who constructs a graph by plotting points and 
applying algebraic methods to identify roots, inflection points, maximum/minimum 
values would be engaging in static shape thinking. In contrast, a student is said to be 
engaging in emergent shape thinking when the graph’s trace emerges from the student 
considering two quantities’ values as they vary together. A student engaging in the 
first three mental actions described in the Carlson et al. (2002) covariation framework 
would be engaged in emergent shape thinking. The mental actions as characterized
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Fig. 1 A conception of a 
point as the simultaneous 
values of two quantities (a 
multiplicative object) 

in the context of a student constructing a graph of the height of water in a vase in 
terms of the volume of water in the vase entails: (i) conceptualizing two quantities’ 
values varying together (i.e., the volume of water in the vase and the height of the 
water in the vase) (MA1); (ii) conceptualizing the two quantities’ values varying 
simultaneously and continuously, while considering the direction of the variation of 
each quantity’s value (as the volume of water in the vase increases the height of the 
water in the vase increases) (MA2); (iii) conceptualizing how the values of the two 
quantities vary together by imagining a successive fixed amount of variation in one 
quantity while considering the amount of variation in the other quantity (considering 
how much the water’s height varies while considering successive fixed increases in 
the volume of water) (MA3). 

When the student has linked together two measurable attributes of the vase (the 
volume of water in the vase and the height of the water in the vase), they have 
conceptualized a multiplicative object, an object that simultaneously combines the 
attributes of two conceived quantities (Saldanha & Thompson, 1998; Thompson, 
2011). A student who has conceptualized the two quantities as a multiplicative object 
may find it useful to sometimes consider the variation in one quantity only; however, 
when doing so the student will have a persistent awareness that the other quantity’s 
value is also varying (Thompson & Carlson, 2017) (see Fig.  1). The volume of water 
in the vase (in cups) and the height of water in the vase (in inches) vary in tandem, 
and a point is used to represent the simultaneous correlated values of each quantity. 

7 Pathways Conventions for Graphing 

The Pathways Project uses specific conventions to support students in conceptual-
izing a graph as a record of how two quantities’ values vary together. Prior to intro-
ducing graphing, we engage students in using what we call the quantity tracking tool.
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While observing a dynamic event (e.g., someone walking across the room from one 
wall to another) or an applet that displays a dynamic event (e.g., a vase filling with 
water) in which at least two quantities’ values are varying, students are prompted to 
move their index fingers to track the variation in two quantities’ values. The quantity 
tracking tool, as first described in Thompson (2002), supports students in concep-
tualizing graphs as emergent traces produced from the coupling of values for two 
co-varying quantities. According to Thompson (2002), conceptualizing graphs as a 
record of simultaneous variation requires having students. 

internalize their perceptions of two quantities whose values vary, making that variation 
experientially concrete. To make covariation of quantities values experientially concrete, it 
is essential that they envision a single quantity’s variation as itself having momentary states 
and therefore that the attribute whose value varies has momentary values. (p. 206) 

When introducing the quantity tracking tool, the instructor negotiates a location 
for students’ index fingers that represents a measurement of 0 units for each quantity 
either on (or beside if negative values are being tracked) each student’s desk. The 
instructor also engages the students in deciding on a direction for moving each 
index finger when representing increasing and decreasing values.4 The instructor 
then prompts students to use one index finger to track the variation in one quantity’s 
value (e.g., the height of water in a vase in inches) as they observe the dynamic 
movement or applet. This is repeated several times, with the instructor prompting 
specific students to describe what they were imagining as they moved their finger. 
Students next pick another quantity (in the same problem context) whose value is 
varying in tandem with the first quantity (e.g., the volume of water in the vase in 
cups or the number of seconds elapsed since the waterspout was turned on). After 
the class has decided on a direction for the measurement, they track the quantity’s 
value as they again observe the dynamic event or applet. The instructor may also stop 
the event or applet and prompt students to say what they are imagining as they move 
their index fingers. The instructor then prompts students to use both index fingers to 
simultaneously track the two quantities’ values while observing the situation unfold. 
To ensure that students are engaging in quantitative reasoning, it is important that the 
instructor prompt students to explain what their finger movement represents, what 
the initial location of one or both of their index fingers represents, how they know 
what direction to move their fingers, etc. (see the next section for a detailed example 
of using the quantity tracking tool). 

It is noteworthy that use of the quantity tracking tool requires students to both 
conceptualize and track a quantity’s measurement, including where the measurement 
begins and the measurement’s direction, prior to moving both index fingers to track 
the simultaneous value of the two quantities as their values vary. The convention 
that each finger be moved up or down (or right or left) from a common starting 
point keeps students’ focus on the magnitude of the quantity’s value in contrast to

4 When initially using the quantity tracking tool students typically decide that a positive value of 
one quantity is represented by a distance upward from a starting point and that positive values of a 
second quantity are represented by a distance to the right of the same starting point, while negative 
values are downward and to the left respectively. 
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Fig. 2 Graphs emerge as 
traces 

tracing a pre-imagined shape. We also see the quantity tracking tool as providing a 
meaningful foundation for conceptualizing coordinate axes as measurement tools for 
two quantities’ values. Ours and others’ studies (e.g., Frank, 2017a, 2017b) suggest 
that students typically lose sight of the fact that each axis is a measuring tool for one 
quantity, and that every point on a graph represents the simultaneous measurement 
of two quantities. The Pathways convention of drawing dashed lines from the point 
back to the axes (as in Fig. 1) are one attempt to reinforce the conception of a point 
as the simultaneous value of the two quantities at an instance during the unfolding 
of the dynamic event. 

We encourage instructors to leverage the ways of thinking supported in the quan-
tity tracking tool as a basis for constructing graphs in their lessons. As the unfolding 
of a dynamic event is displayed in an applet or animation, instructors support students 
in seeing the graph materialize with the leading point on the emergent trace projected 
back to the axes with dashed lines (Fig. 2) and the point representing the simulta-
neous values of two quantities (with values determined from the axes). In this way 
attributes of the relationship between the covarying quantities also emerge as “prop-
erties of covariation” (Moore & Thompson, 2015, p. 786), such as whether one 
quantity increases or decreases as the other quantity increases and where and why 
this behavior may change. 

8 Implementing the Quantity Tracking Tool 

We designed an applet to assist students in conceptualizing the quantities in the 
Tortoise and Hare context. Recall that the Hare agrees to give the Tortoise a 60-m 
head start (Fig. 3).

As the instructor moves a slider smoothly to vary the number of seconds since the 
start of the race (or hits “play” and allows the slider to move automatically), each
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Fig. 3 The initial positions of the tortoise and hare

Fig. 4 Tracking each animal’s distance from the starting line 

animal’s distance from the starting line is represented as a dashed line with an arrow 
pointing to the right (Fig. 4).5 

As the applet plays, the elapsed time since the start of the race varies as does the 
amount of time remaining until the Tortoise finishes the race and the amount of time 
remaining until the Hare finishes the race. There are also five distances with values 
that vary as the race plays out. Let us assume that the instructor has begun exploring 
this context with her class and is now interested in exploring how the distance (in 
meters) the Tortoise is ahead of the Hare varies with the elapsed time (in seconds) 
since the start of the race. The conceptions and imagery students construct while 
the teacher engages them in a conversation using the applet and quantity tracking 
tool is impacted by the instructor’s effectiveness in focusing students’ attention on 
conceptualizing the relevant quantities and how they vary together. To illustrate this 
point, we provide a brief example of hypothetical instructor and student actions for 
promoting quantitative reasoning in students (see Table 36 ). Note that the questions 
posed by the instructor in the context of the applet and quantity tracking tool continue 
to promote speaking with meaning.

Constructing a graph that carries meaning for the one constructing it relies on 
the individual having in mind a goal to represent the simultaneous variation of two 
quantities’ values as they vary together. When enacting the quantity tracking tool, 
students’ attention is focused on coordinating the magnitudes and directed measures 
of quantities with values that vary in tandem. As students make decisions about the 
starting position for their index fingers, they consider the starting point (0 value) 
for each measurement. As they begin to track a quantity’s value by moving their

5 The instructor selects a specific button to indicate which two quantities to isolate when exploring 
the concurrent variation in two quantities’ values. 
6 The convention of quantitative drawing, as explained later in this chapter, can further support 
students in conceptualizing the quantities we want them to coordinate with the quantity tracking tool. 
The conventions in this chapter all support each other to maximize students’ learning opportunities. 
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Table 3 Utilizing the quantity tracking tool in a class setting with students to help them 
conceptualize relevant quantities and relationships between quantities 

Instructor actions/statements 
to students 

Student actions Follow-up 
questions/observations 

1 “Place your right index finger 
on your starting position for 
measuring the elapsed time 
since the race began.” 

Students choose a starting 
position for their fingers 

Pose questions to specific 
students: “What does the 
position of your finger 
represent?” If student say 
“time,” ask them, “What 
time?” Continue probing 
students until your weakest 
students can verbalize a 
precise description of the 
quantity (e.g., “The number 
of seconds elapsed since the 
start of the race.”) 

2 “As I move the slider on the 
applet, move your right index 
finger in a way to represent 
the number of seconds 
elapsed since the start of the 
race.” (repeat if some 
students don’t participate) 

All students move their right 
index finger to the right from 
the designated starting point 
for measuring the number of 
seconds elapsed since the 
start of the race. The motion 
is smooth and continuous. 
See Fig. 5 

Pose questions to specific 
students: “What were you 
imagining as you moved your 
finger? What does the starting 
position of your finger 
represent? What does the 
ending position of your finger 
represent? Should your finger 
be moved smoothly? 
Explain.” 

3 “To represent that the tortoise 
is a distance of 0 m ahead of 
the hare, position your left 
index finger at the same initial 
position as your right index 
finger. Positive values will be 
above this position.” 

Students position their left 
index fingers at the same 
initial position as their right 
index finger 

Students often overlook 
exploring how the distance 
that the tortoise is ahead of 
the hare varies during the 
running of the race. Ask 
students to point out where 
they “see” this quantity’s 
magnitude represented on the 
drawing 

4 “Now, place your left index 
finger on a starting position 
that represents the 
approximate distance that the 
tortoise is ahead of the hare at 
the start of the race.” 

Students place their left 
finger some distance above 
the starting reference point 

Note that some students will 
likely place their finger at the 
position that represents 0 m 
from the starting line. Ask 
these students to say what a 0 
value represents. Ask 
questions like, “Where is the 
tortoise relative to the hare at 
the start of the race?” 

5 “As I move the slider on the 
applet, move your left index 
finger in a way to represent 
the approximate distance 
between the tortoise and 
hare.” 

All students move their left 
index downward from their 
designated starting point. 
The motion is smooth and 
continuous. See Fig. 6 

If some students do not 
participate or move their 
index finger in the wrong 
direction, prompt them to 
explain their thinking; then 
replay the race being run

(continued)
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Table 3 (continued)

Instructor actions/statements
to students

Student actions Follow-up
questions/observations

6 Prompt students to model the 
tortoise’s distance ahead of 
the hare in terms of the 
number of seconds since the 
start of the  race  using both 
index fingers at the same 
time 

All students coordinate the 
motion of their right and left 
index fingers to represent the 
relationship between the two 
quantities’ values. The 
motion is smooth and 
continuous. See Figs. 7 and 8 

Since textbooks and 
instructors commonly make 
requests for students to 
represent one quantity “in 
terms of” another. It is 
important to introduce this 
language (and make sure 
students are clear on what it 
means) so students can attach 
this request to the mental 
operations of covarying the 
tortoise’s distance ahead of 
the hare with the amount of 
time that has elapsed since 
the start of the race 

Fig. 5 A student’s right hand as she uses her index finger to sweep out a duration of elapsed time 
while the animation plays

index finger, they associate a direction of movement for positive measurements and 
a direction for negative measurements (Figs. 5 and 6). 

A point on a graph in the coordinate plane is then viewed as the co-occurring values 
of the two quantities (a multiplicative object) at an instance as the two quantities’ 
values vary together (Figs. 7 and 8). 

Given the broadly documented difficulties students encounter in creating and 
interpreting graphs (e.g., Carlson, 1998; Monk, 1992) and the commonly held view 
that a point on a graph is a result of a sequence of actions (count over 4 and down 
5), shifting students to conceptualize graphs as an emergent trace of the values of 
two covarying quantities requires repeated reinforcement. Tracking the simultaneous 
variation in the two quantities’ values by physically moving one’s index fingers 
together promotes students’ conceiving of the two quantities’ values as coupled (a
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Fig. 6 A student’s left hand as she uses her index finger to sweep out the distance the tortoise is 
ahead of the hare while the animation plays 

Fig. 7 A student using her index fingers to coordinate time elapsed (in seconds) since the beginning 
of the race with the Tortoise’s distance (in meters) ahead of the Hare

multiplicative object) (Fig. 8), while considering how the values of the two quantities 
vary together.7 

7 The conceptualizations for enacting the quantity tracking tool parallels the thinking for 
constructing a graph of two quantities’ values as they vary together.
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Fig. 8 The imagery we want students to develop for a graph as an emergent trace while using the 
quantity tracking tool

9 Emergent Symbol Meaning and Conventions 
for Meaningful Symbolization Activity 

Generating a meaningful algebraic representation of a relationship between quanti-
ties’ values relies on individuals organizing quantities they find relevant in a struc-
tured mental model. Constructing a structured mental model of the quantitative 
relationships depends on the individual’s ability to conceptualize new quantities 
by relating two other quantities. As an example, one might conceptualize the relative 
size of quantity A with respect to quantity B and represent this new quantity as a 
quotient, (size of quantity A)/(size of quantity B), where the result, as well as any 
expression representing that result, is understood to be that relative size measure-
ment. Representing a quantitative structure in a drawing can be useful for advancing 
an individual’s image of a problem’s quantitative structure while laying a founda-
tion for producing a meaningful algebraic representation that relates two quantities’ 
values as those values vary.8 

8 We repeat that the conventions and ideas described throughout this chapter support each other. 
Speaking with meaning, the  quantity tracking tool, and  quantitative drawing all support students 
in using symbols meaningfully and making connections between different representations of the 
same relationship.
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Thompson (1990, 1993, 2011) draws a careful distinction between quantitative 
operations and arithmetic operations. A person uses arithmetic to calculate quan-
tities’ values, but the choice of operations is based on the quantitative operation 
conceptualized—the way the individual has formed a new quantity in their mind as 
a relation involving two other quantities. For example, “difference” as a quantitative 
operation is an additive comparison9 between two quantities. However, a difference 
is not always evaluated using subtraction. Thompson uses the following problem 
to demonstrate this idea with a difference evaluated via division: “Jim is 15 cm 
taller than Sarah. This difference is five times greater than the difference between 
Abe and Sam’s heights. What is the difference between Abe and Sam’s heights?” 
(Thompson, 1990, p. 11). This example illustrates why the common pedagogical 
approach of training students to key on specific words like “difference” when deter-
mining the operation for combining two quantities to represent a new quantity can 
be problematic and sometimes leads to constructing symbols that do not represent 
the quantitative relationships described in the problem. 

It is also our experience that instructors often focus on the “sameness” of the solu-
tions produced by multiple solution paths instead of highlighting and emphasizing 
the unique reasoning, variety in quantities and structures conceptualized, different 
conceptualizations of problem goals, and so on. They also tend to ignore parallels 
between steps in a reasoning process (including the evaluation of various quantities) 
and the steps in a numerical or algebraic solution process (including highlighting 
which quantities are evaluated/represented at each step). Instead, they defer to alge-
braic “equivalence” even when the solutions represent unique ways of conceptual-
izing the context. The impact of this is that students receive the message that, even 
though there are multiple solution paths, there is one preferred path and algebraic 
form of a solution, which often does not foster students’ confidence in their own 
mathematical reasoning and sense-making. 

10 Quantitative Reasoning and Algebra 

It is the attempt to generalize the quantification process for a quantitative relationship 
where algebraic expressions enter the picture and where distinctions between quanti-
tative and arithmetic operations become critical. Thompson (1992, 1996) describes a 
study where fourth-grade students were free to develop their own notational methods 
for communicating their reasoning about decimal place value within activities he 
designed to encourage students to move back and forth between a situation and how 
the individual wanted to express that situation with notation. The result was that

9 An “additive comparison” is the answer to the question, “By how much does the magnitude 
(or value) of one quantity exceed the magnitude (or value) of another quantity?” In contrast, one 
category of “multiplicative comparisons” is the answer to the question, “One quantity is how many 
times as large as a second quantity?”. 
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students talked about their images of the situations presented “as they spoke about 
notational actions [italics in original]” (Thompson, 1996, p. 16). 

As a precursor to seeing an algebraic expression as representing the value of a 
quantity (in underdetermined form), two understandings are paramount. (1) The indi-
vidual has a productive conceptualization of the quantity for which he is attempting 
to represent the value. (2) The individual sees the expression that evaluates the quan-
tity, as well as its numerical value, as representing the quantity’s measurement. For 
example, imagine dropping an object from a tall building. Between two moments 
in time, the object’s height above the ground changes from 42 to 29 ft. In order to 
evaluate the quantity, the change in the object’s height above the ground, the indi-
vidual must understand that the change in the object’s height above the ground is 
a difference, and moreover there is a frame of reference (the 0 value is the ground 
and a positive value represents a distance above the ground) such that the differ-
ence from an initial value to a final value is a directed change that indicates the 
direction of the movement (upward or downward). With this conceptualization, he 
can understand that the expression “29–42 ft” represents the value of this change 
(directed difference), as does “– 13 ft”. Individuals with both understandings are 
poised to understand how the variable expression “h – 42 ft” (where h represents the 
object’s height above the ground in feet) represents the change in the object’s height 
above the ground (from its initial height) at any moment during its fall. Thus, it is 
important that students see unevaluated expressions as representing a new quantity 
that is the result of performing a designated quantitative operation, in addition to the 
final numerical value (Thompson, 2011) (see Table 4). Note that the table describes 
basic quantitative operations for sum, difference, product, and quotient. This list is 
not exhaustive. Again, we emphasize that student conceptualization of quantitative 
operations is what determines their choice of operation—not key words. And more 
complex quantities such as measurements of force, torque, work, and so on often 
require multiple levels of comparison and coordination.

Within Thompson’s theory, there is no assumption that proficiency with quan-
titative reasoning (or a disposition to reason quantitatively) is a natural outcome 
of participating in mathematics courses. In fact, research reports frequently point 
out how instruction in the United States produces students (and instructors) without 
this proficiency (e.g., Moore & Carlson, 2012; O’Bryan, 2020b; Thompson et al., 
2017; Yoon et al., 2015). As we mentioned earlier, professional development training 
designed to introduce instructors to the usefulness of quantitative reasoning and 
provide support for implementing activities to support quantitative reasoning in the 
classroom often failed. Introducing Pathways course materials have helped make 
shifts in students’ and instructors’ meanings possible, but it remains an ongoing chal-
lenge to help instructors create lessons and consistently engage students in discourse 
focused on helping students strengthen their quantitative reasoning skills. O’Bryan 
and Carlson (2016) report on one instructor who did create such a learning envi-
ronment for her students. The primary finding was that this instructor had internal-
ized a set of expectations about engaging in mathematical reasoning (especially in 
how that reasoning connected to algebraic representations of mathematical relation-
ships). It was these expectations that drove her use of quantitative reasoning and the
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Table 4 Quantities to be evaluated along with the expressions that represent those quantities’ values 

Concept Specific example General example 

Combining quantities 
additively 

Mario is 6.5 years older than 
his sister Lexi. If x represents 
Lexi’s age in years since she 
was born, Mario’s age is x + 
6.5 years 

Quantity A is measured in 
some unit and has a 
measurement of a in that unit. 
Quantity B is measured in a 
compatible unit and measures 
b in that unit. The sum a + b 
represents the measurement of 
the quantity formed by 
combining Quantity A and 
Quantity B additively 

Additive comparisons of two 
quantities 

Michael is 62 in. tall and Maria 
is 55 in. tall. Michael is 62–55 
in. taller than Maria 

Quantity A is measured in 
some unit and has a 
measurement of a in that unit. 
Quantity B is measured in a 
compatible unit and measures 
b in that unit. The difference a 
– b represents the amount by 
which the measurement of 
Quantity A exceeds the 
measurement of Quantity B 

Combining quantities 
multiplicatively 

The radius is 1.7 in. long and 
the arc length is 2.8 times as 
long as the radius. The length 
of the arc is (2.8)(1.7) times as 
long as the radius 

Quantity A is measured in 
some unit and has a 
measurement of a in that unit. 
Making n copies of Quantity A 
produces a resulting quantity 
that is n times as large as 
Quantity A, with measurement 
n · a in the unit of Quantity A 

Comparing quantities 
multiplicatively 

The height of water in an 
empty pool increased 5 in. in 
3 h as water flowed into the 
pool at a constant rate of 
change. The quotient 5/3 tells 
us the relative size of the 
height (in inches) of the water 
in the pool is, as compared to 
the number of hours since the 
water started flowing into the 
pool 

Quantity A is measured in 
some unit and has 
measurement a in that unit. 
Quantity B is measured in 
some unit and has a 
measurement b in that unit. 
The quotient a/b = c is the  
relative size of a and b, with  
the quotient c representing 
how many times as large a is 
than b (and is usually 
associated with 
conceptualizing average rates 
of change)
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activities she designed for students. O’Bryan (2018, 2020a) called these beliefs and 
expectations emergent symbol meaning (see next section). 

As students develop meanings for ideas like relative size, differences, change 
in a quantity’s value, etc., it is critical that instruction and activities encourage a 
“dialogue” within the student about the quantities conceptualized and the numerical 
methods for calculating the quantitative relationship’s value. It is also critical to 
emphasize how symbolic methods for representing this value as an unevaluated 
expression such that the order of operations parallels the calculations performed 
mirrors the steps in the reasoning process that motivated those calculations. The 
algebraic expressions then represent the same reasoning from which the quantities 
were conceptualized, but where the quantity’s value is undetermined (Thompson, 
1990, 2011). 

10.1 Emergent Symbolization 

As mentioned earlier, Moore and Thompson (2015) coined the term emergent shape 
thinking to describe reasoning about graphs so that (1) they emerge as traces of 
how two quantities change together in tandem, (2) individuals see already-complete 
graphs as having been generated as emergent traces and they can imagine the coor-
dination that produced the graph, and (3) individuals conceptualize properties of 
the relationship between the co-varying quantities through this emergent trace. They 
argue that this way of thinking about graphs is useful because “students thinking about 
graphs emergently are positioned to reflect on their reasoning to form abstractions and 
generalizations from their reasoning… not constrained to a particular labeling and 
orientation” (pp. 787–788). We emphasize that emergent shape thinking describes 
both how someone could reason about generating a graph but also describes how 
that person could interpret a graph produced by someone else. In other words, the 
individual’s graphing scheme contains an expectation about what it means to reason 
about graphs as well as actions related to producing graphs. 

We argue for a similar idea related to productive reasoning about generating and 
interpreting algebraic formulas that relate two or more quantities’ values in a situ-
ation. O’Bryan (2018, 2020a) described emergent symbol meaning10 as a similarly 
productive set of expectations, beliefs, and meanings related to generating and inter-
preting quantitatively meaningful algebraic statements. Individuals may have any 
combination of these expectations to varying degrees of sophistication, and their 
expectations may be situation dependent. The following list is expanded from the 
original definition.

10 Note that O’Bryan (2020a) uses emergent symbol meaning to describe a set of meanings and 
expectations that may guide an individual’s algebraic symbolization activity and interpretation of 
the algebraic symbols that others generate. He uses emergent symbolization when describing the 
actions an individual engages in that are motivated by these meanings and expectations. 
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1. An expectation that performing calculations or generating expressions should 
reflect a quantification process for quantities that the individual conceptualizes. 

2. An expectation that demonstrating calculations and producing expressions are 
attempts to communicate an individual’s meanings. Thus, when given a set of 
calculations or an expression/formula, we can hypothesize how the individual 
conceptualized a situation based on analyzing the products of their reasoning. 

3. An expectation that the order of operations used to perform calculations, evaluate 
expressions, and solve equations reflects the hierarchy of quantities within a 
conceptualized quantitative structure.11 

Like emergent shape thinking, we emphasize that emergent symbol meaning 
describes the motivations and goals for how an individual could reason about the 
process of developing algebraic statements and how that person could reason about 
the algebraic statements someone else produces. As with emergent shape thinking, 
students with these expectations “are positioned to reflect on their reasoning to form 
abstractions and generalizations from their reasoning” (Moore & Thompson, 2015, 
p. 787). 

O’Bryan (2018, 2020a) provides examples of how students with alternative sets 
of beliefs and expectations for their mathematical activity tended to be inattentive to 
quantities in choosing and justifying numerical operations and algebraic representa-
tions. It is worth mentioning that emergent symbol meaning is not just about framing 
a productive set of beliefs and expectations for students. We again point readers to 
O’Bryan and Carlson’s (2016) report on how an instructor who internalized these 
beliefs and expectations was positioned to support productive mathematical discourse 
and to develop tasks that allowed her to decenter relative to her students’ thinking. 
This is why we believe that introducing emergent symbol meaning as an explicit 
element of the theory of quantitative reasoning is useful. It can help orient researchers 
and curriculum designers to something important in attempts to foster quantitative 
reasoning—the beliefs and expectations students and instructors have regarding their 
mathematical activity. Without altering these beliefs and expectations we have found 
little success in shifting instructors or students to valuing and utilizing quantitative 
reasoning. See Table 5 for some examples of less and more productive beliefs about 
calculations and symbolization.

11 Numbers 1 and 3 in this list might seem quite similar, but there is a different intent. The first item 
focuses on the expectation that all calculations or parts of expressions should represent an evaluation 
process for some quantity in the situation, and thus each calculation or part of an expression can 
be quantitatively justified (and, if the individual cannot justify it, then it provides a motivation to 
reconsider how she has conceptualized the situation). The third item is about how mathematically 
equivalent expressions with different orders of operations reflect different ways of understanding 
the situation and that manipulations, including “simplifying” or rewriting an equation to solve for 
a different variable, may require reconceptualizing the quantitative structure to make sense of the 
result. 
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Table 5 Some beliefs and expectations we and others have found to be unproductive for students 
along with a similar list of more productive beliefs and expectations grounded in Thompson’s theory 
of quantitative reasoning 

Some beliefs and expectations guiding mathematical activity: calculations and symbolization 

Examples of less productive beliefs and 
expectations 

Examples of productive beliefs and 
expectations (emergent symbol meaning) 

Variables always stand in for an unknown value 
to be solved for (Jacobs, 2002; Lozano, 1998) 

A variable represents the value of a quantity 
when that value is not fixed. We also use 
variables to allow us to express the value of one 
quantity in terms of the value of another 
quantity when those values change in tandem 

Numbers and letters are paired together by 
looking for key words like sum, difference, 
and product and should match the form of 
examples in the current textbook section or 
instructor demonstrations 

Calculations and algebraic expressions reflect 
the relationships between quantities’ values as 
conceptualized by the individual. The first 
steps in mathematical reasoning are to make 
sense of the problem context and identify 
quantities and their relationships 

The equal sign in a statement is an indication 
that something must be “solved for” or 
calculated 

An equal sign indicates that you have expressed 
the value of a quantity in two ways (and thus 
the expressions on each side of the equal sign 
represent the value of the same quantity), 
including the possibility that one of those is as 
a targeted constant value. Equal signs thus 
express equality in both value and meaning (or 
equality in value between two like quantities) 

If the answer to a question is an algebraic 
expression, equation, or formula, then students 
should always and immediately simplify their 
answers as much as possible 

The order of operations for evaluating an 
algebraic expression reflects the quantitative 
structure the individual conceptualized. 
Mathematically equivalent statements do not 
necessarily indicate equivalent reasoning, and 
much information can be gained from 
examining and discussing non-simplified 
expressions (practicing and understanding the 
purpose of simplification is a separate 
mathematical idea) 

10.2 Emergent Symbolization in Instruction 
and Curriculum 

Part of supporting the development of emergent symbol meaning, and thus a propen-
sity to reason quantitatively and analyze others’ reasoning quantitatively, involves 
instructors endorsing and highlighting key differences in students’ reasoning. An 
instructor should look for opportunities to discuss the thinking that led to a student’s 
choice of operations; she could also prompt students to explain the thinking that deter-
mined the order in which calculations were performed. As students produce algebraic 
expressions the instructor should ask them to explain what specific terms and expres-
sions represent. The instructor might ask, “What quantity’s value is being represented
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on each side of the equal sign?” An instructor’s overarching goal is to support students 
in conceptualizing quantities and how they are related as a habitual way of acting for 
constructing symbols that carry meaning for the student. The instructor can foster 
students’ habitual use of quantitative reasoning by consistently requiring students to 
make a drawing that represents the quantitative structure of a problem. Our challenge 
has been to get instructors to consistently adopt these practices in both their teaching 
and own reasoning. We are developing new approaches aimed at gradually shifting 
instructors’ commitment to viewing symbols as emerging from their conceptions of 
quantities and how they are related (emergent symbol meaning) as a perspective for 
modeling dynamic situations in mathematics and science with function formulas. 

11 An Example of Unproductive Beliefs in Action 

We do not have space within this paper to provide multiple examples of how students 
without the expectations described by emergent symbol meaning operate when 
working in mathematical contexts. However, we present one brief example from 
O’Bryan (2020a). O’Bryan found that students tended to produce linear models for 
contexts where exponential models were expected. It appeared that students were 
trying to translate English goal statements using mathematical symbols without 
attending to the quantities involved or the meaning of the expressions they produced. 
For example, in trying to model the height of a plant that was 7 in. tall when first 
measured and that grew by 13% per week, a large majority of students provided the 
result shown in Fig. 9. 

Students’ explanations revealed a failure to notice that 0.13t did not represent a 
number of inches. One student, when trying to represent the height of a different 
plant that grew by 50% for two weeks and was four inches when first measured, 
produced the answer shown in Fig. 10. Even though his answer “8 in.” is incorrect 
based on the conventional meaning of percent change, what is most interesting is 
that (1) the expression he wrote, 4 + 2·½, fits the pattern in Fig. 9, (2) he noticed 
and verbalized that the expression did not produce the value he claimed it did, and

Fig. 9 Students appeared to produce answers as literal translations of English words into mathe-
matical symbols (O’Bryan, 2020a, p. 453). The circled numbers are for emphasis only and were 
not written by students 
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Fig. 10 A student’s work 
justifying a plant’s height 
after two weeks if its first 
measured height was four 
inches and it grew 50% per 
week (O’Bryan, 2020a, 
p. 451) 

(3) he chose not to try to rewrite the incorrect statement since he was confident his 
final answer was correct. 

According to Thompson (1996), 

the expression of an idea in notation provides [a student with] an occasion to reflect on what 
she said, an occasion to consider if what she said was what she intended to say and if what she 
intended to say is what she said. To act in this way unthinkingly is common among practicing 
mathematicians and mathematical scientists. Behind such a dialectic between understanding 
and expression is an image, most often unarticulated and unconsciously acted, of what one 
does when reasoning mathematically. This image entails an orientation to negotiations with 
oneself about meaning, something that is outside the experience of most school students. 
[…] [T]he predominant image behind students’ and instructors’ notational actions seems to 
be more like ‘put the right stuff on the paper.’ (p. 12) 

The effect of students’ unreflective combining of symbols leads to students 
encountering significant barriers in their future math classes. For example, the 
students’ work in Fig. 10 is likely the product of many years in mathematics classes 
without an emphasis on the quantitative significance of notational activity. Focusing 
instruction on promoting emergent symbol meaning and emphasizing important 
conventions such as speaking with meaning, emergent shape thinking, quantita-
tive drawing, careful variable definitions, etc. helps students focus their thinking 
on conceptualizing quantitative relationships. This provides the necessary founda-
tion to help shift students to viewing function formulas and graphs as two ways of 
representing how two quantities’ values vary together. 

11.1 Quantitative Drawing and Building Imagery 
for Quantitative Relationships 

As noted earlier, a major initial challenge in supporting precalculus instructors to 
maximize the impact of the Pathways research-based materials has been advancing 
their understanding of the course’s key ideas and how they are learned. This includes 
their acquiring productive conceptions of ideas of variable, function, function compo-
sition, constant rate of change, exponential growth, etc., and their viewing func-
tion graphs and formulas as ways of representing the constrained covariation of
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two quantities’ values. A second major challenge has been to support instructors in 
shifting their teaching to have a primary focus on developing and leveraging student 
thinking toward the goal of supporting their students in relying on their reasoning as 
a foundation for emerging as confident and competent mathematical thinkers. 

To provide a concrete example of an instructional shift we are trying to achieve, 
see Table 6. We contrast two Pathways instructors’ approaches to helping students 
respond to a request to define the distance that the Tortoise is ahead of the Hare 
in terms of the time (in seconds) since the start of the race. Note that we would 
describe Instructor B as engaging in quantitative drawing because conceptualizations 
of quantities and their relationships to each other are foregrounded in the conversation 
and highlighted in representations. We once more emphasize that the convention of 
quantitative drawing, with practices that include writing clear variable definitions 
and using vectors to represent a quantity’s magnitude when that magnitude can vary, 
becomes even more powerful when the instructor also emphasizes speaking with 
meaning, emergent shape thinking, and emergent symbol meaning (most of which 
are practices within these exchanges). 

The contrasting approaches in Table 6 illuminate how an instructor’s commitment 
to quantitative reasoning influences her instructional orientation, discussions, and 
questions. What we found to be surprising (and now predictable over time) is the 
strong commitment new Pathways instructors have to showing students steps for 
obtaining answers and how little value they place on helping their students use their 
own reasoning to make sense of a problem context prior to trying to write formulas 
and construct graphs. As examples of how these views surface during instruction, 
notice that Instructor A appears to be the one doing most of the thinking and her 
questions to students are almost exclusively focused on how to find the answer, what 
to write, or what to do (e.g., What is the formula for the Hare’s distance? What did you 
do to get 60 – 3.2t?). In contrast, Instructor B consistently makes requests and poses 
questions to engage students in identifying and conceptualizing the quantities in the 
problem context and considering how they are related (e.g., What are you imagining 
measuring? How should I represent the length of the race?) prior to making requests 
for students to represent quantities’ values with symbols. It is also noteworthy that 
Instructor B consistently speaks with meaning when interacting with students and is 
careful to specify the quantity when defining variables.
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12 Discussion 

Studies of precalculus instructors’ pedagogical practices have revealed a predomi-
nant focus on instructor-led demonstrations of methods for obtaining answers, with 
instructors constructing incoherent drawings and doing the majority of the speaking 
in class (e.g., Carlson & Bas-Ader, 2019; Teuscher et al., 2016). Supporting precal-
culus instructors to commit to engaging students in quantitative reasoning (and all 
that this entails), and be equipped to do so, is more complex and challenging than 
we initially imagined 15 years ago. We have been successful in some contexts, and 
less successful in others, and continue to explore and investigate approaches (such 
as the conventions described in this chapter) for supporting precalculus faculty to 
make this shift. 

Making the problem more difficult is (1) that many precalculus instructors possess 
relatively weak meanings of fundamental mathematical ideas (e.g., Baş-Ader & 
Carlson, 2021; Musgrave & Carlson, 2017; Tallman & Frank, 2018) and (2) instruc-
tors with weak conceptions of ideas they teach are unable to engage their students 
in conversations that leverage and advance their students’ thinking (Carlson & Bas-
Ader, 2019). For example, during one of our professional development workshops 
with 25 secondary precalculus instructors, the majority expressed that any statement 
with an equal sign was an equation that needed to be solved. In another context, we 
asked this same group of instructors to explain how solving an equation and eval-
uating a function formula differed. After a relatively long wait for a response, one 
instructor said she saw no difference since both are equations that need to be solved. 
As one more example, prior to intervention, many Pathways instructors conceive of 
a constant rate of change as a description of the “slantiness of a line” rather than the 
relative size of the changes in two quantities’ values. Our observations are corrob-
orated by Thompson’s research group’s studies (e.g., Byerley & Thompson, 2017; 
Yoon & Thompson, 2020) of U.S. instructors’ mathematical meanings. Elaboration 
of the difficulties these impoverished conceptions create for students are discussed 
in Thompson and Carlson (2017). 

Instructors who have only experienced traditional curricula in both their learning 
and teaching need sustained and focused support to reconceptualize mathematical 
ideas they thought they understood and to reconceptualize effective teaching as 
focused on and affecting student thinking. Our work with instructors continues to 
provide us with confidence that the culture of mathematics teaching in the U.S. 
can change and that such a change benefits students. We have observed that as 
instructors become more interested in understanding and affecting their students’ 
thinking, and reflecting on their effectiveness in doing so, they (over time) acquire 
more robust images of diverse ways of thinking that students present and improved 
insights into what productive thinking entails (Carlson & Bas-Ader, 2019; Rocha & 
Carlson, 2020). As instructors’ mathematical meanings, images of student thinking, 
and images of effective teaching develop, they are more able to effectively adjust their 
lessons and instruction to be more meaningful and coherent for students (O’Bryan & 
Carlson, 2019; Rocha & Carlson, 2020; Underwood & Carlson, 2012). Instructors
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who became committed to implementing the Pathways conventions for supporting 
quantitative reasoning are individuals who attended our workshops and shifted to 
value our focus on conceptualizing and relating quantities as a foundational way of 
thinking for generating meaningful formulas and graphs. 

It is our goal to support all instructors in engaging in meaningful reflection about 
the impact of their teaching on students’ learning. The Pathways research, devel-
opment, and professional development teams are collectively committed to quanti-
tative reasoning as providing a unifying lens for advancing and studying growth in 
instructor knowledge and instructional practices. Our commitment to this perspective 
emerged from many other attempts to improve precalculus and calculus students’ 
learning, and consistently recognizing that students’ difficulties in understanding 
ideas, constructing meaningful function formulas and graphs, etc. were rooted in 
their failure to conceptualize quantities in a problem context and then to consider 
how pairs of quantities are related and change together. 

13 Concluding Remarks 

We continue to study our effectiveness in supporting instructors’ construction of 
strong conceptions of the key ideas taught in the Pathways curriculum. Silverman and 
Thompson (2008) argue that an instructor must become aware of the mental processes 
and operations that constitute coherent mathematical understandings for reorganizing 
their mathematical knowledge and engaging in effective teaching practices. Quantita-
tive reasoning will not become a meaningful part of an instructor’s teaching practices 
until she has an image of the conceptual affordances of this way of reasoning for 
students’ learning. We have evidence that the Pathways conventions for representing 
quantitative relationships, if implemented consistently, lead to advances in students’ 
mathematical thinking, including their expectation that symbols are useful for repre-
senting quantities and relationships between quantities and that graphs emerge as a 
trace of an individual’s conception of how two quantities’ values vary in tandem. 
Our work has revealed that an instructor’s consistent implementation of the Path-
ways conventions results in both students and instructors constructing more robust 
meanings for specific mathematics ideas, and instructors showing greater interest 
in understanding student’s reasoning. These shifts were frequently accompanied 
by an increased attention on quantitative reasoning in instructors’ lesson design and 
delivery. The result is a profound shift in how students and instructors approach 
applied problems; in particular, their actions to conceptualize quantitative relation-
ships, as a foreshadowing of their construction of function formula and graphs that 
are personally meaningful to the one constructing them. 
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