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This chapter provides an illustration of how the models and modeling 

perspective can be used in collegiate mathematics education research and 

instruction. The models and modeling approach (chapter 1) provides 

instructional designers with a well-defined structure for creating curriculum. The 

curricular activities for this approach, referred to as model-eliciting activities 

(Lesh, Hoover, Hole, Kelly, & Post, 2000), are designed to encourage students 

to make sense of meaningful situations, and to invent, extend, and refine their 

own mathematical constructs. The resultant student products reveal students' 

thinking and provide both teachers and researchers with a powerful lens for 

viewing students' reasoning and concept development. In this chapter, we 

discuss how this perspective has influenced both our research and instruction.  

For the past 5 years we have been engaged in research to investigate 

undergraduate students' understanding of rate of change (Carlson, 1998) and 

covariational reasoning (coordinating two varying quantities while attending to 

the ways in which they change in relation to each other; Carlson, Jacobs, & 

Larsen, 2001). These studies have identified aspects of covariational reasoning 

and have pointed to specific difficulties that students encounter when reasoning 

about dynamic events. Much of the data from our past research was gathered 

using specific mathematical tasks.  Using the insights gained from this earlier 

research (Carlson, 1998), we modified these tasks to adhere to the six principles 

for developing model-eliciting activities (Lesh et al., 2000).  We then utilized 

these new activities in a small-scale study that investigated undergraduate 

students' covariational reasoning abilities.  

First, we present a brief sketch of Marilyn Carlson's research on 

covariational reasoning and the theoretical framework that resulted from that 

work. We then describe the process of converting a specific covariation task, 

discussed in Carlson (1998) to a modeling eliciting activity. This is followed by 

a description of a study that uses the newly developed model-eliciting activities.  
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Finally, we conclude this chapter by describing the insights gained into the 

effectiveness of model-eliciting activities in both revealing students' thinking 

and facilitating the research process. 

 

 

REASONING ABOUT CHANGE 
 

The rapid increase of mathematical applications requires that all citizens be 

fluent in modeling continuously changing phenomena, especially phenomena of 

dynamic situations (Kaput, 1994). Research has revealed that conventional 

curricula have not been successful in promoting these modeling abilities in 

undergraduate students. Several studies (Carlson, 1998; Kaput, 1992; Monk, 

1992; Monk & Nemirovsky, 1994; Saldana & Thompson, 1998; Tall, 1992; 

Thompson, 1994a, 1994b) offer insights for addressing these problems by 

identifying and describing the complexities encountered by students when 

representing and interpreting dynamic events.   

While investigating young children, Lesh et al. (2000), Kaput (1994), and 

Confrey and Smith (1995) have observed that, when provided the proper 

motivation and tools, middle school students are capable of creating and 

analyzing sophisticated mathematical models.  Kaput (1994) has also advocated 

that with the use of powerful tools (e.g., Simcalc) young children can begin to 

engage in activities to explore change and accumulation of change, while 

building a strong conceptual foundation for the major ideas of calculus. These 

results suggest that similar outcomes may also be possible for undergraduate 

students.  

Consequently, we have responded by working to improve undergraduate 

students' ability to create and interpret models of dynamic events. Previous 

research (Carlson et al., 2001) has produced a framework for describing and 

analyzing the cognitive activities involved in coordinating two varying 

quantities while attending to the ways in which they change in relation to each 

other (i.e., covariational reasoning). Our initial attempts to improve instruction 

of covariation have involved the creation of activities to promote preservice 

secondary teachers' covariational reasoning abilities.   

As we have become more informed about the models and modeling 

perspective and the role of covariational reasoning in building and interpreting 

mathematical models of dynamic function events (i.e., a functional relationship 

that denotes a pattern or process of change), the following questions arose:  

 • Can research related to functions (Carlson, 1998) and covariation 

(Carlson et al., 2001) inform the design and use of model-eliciting 

activities?    • What effect does the use of model-eliciting activities have on the 

development of undergraduate students' covariational reasoning 

abilities? • How can the models and modeling perspective inform the refinement of 

the Covariation Framework?  
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• How can the models and modeling perspective inform future 

investigations of students' covariational reasoning abilities? 

 

Motivated by these questions, we began the process of integrating a models 

and modeling perspective with our covariation research and current instructional 

practices.  

 

 

A COVARIATIONAL REASONING FRAMEWORK 
 

The Covariation Framework (Fig. 25.1) describes six categories of mental 

actions that have been observed in students when applying covariational 

reasoning in the context of representing and interpreting a graphical model of a 

dynamic function event (Carlson, 1998). Our research findings have revealed 

that covariational reasoning does not necessarily involve all six mental actions, 

nor does it consist of a sequential progression from MA1 through MA6, nor do 

experts always begin their reasoning at MA6 (Fig. 25.1).  However, we have 

evidence that sophisticated covariational reasoning is characterized by the 

ability to analyze a situation using MA6, together with the ability to “unpack” 

that mental action by using MA1 through MA5. 

 

 

 

Covariation Framework 

 

Categories of Mental Actions (MA) 

 MA1)     An image of two variables changing simultaneously;  

 MA2)  A loosely coordinated image of how the variables are changing with 

   respect to each other (e.g., increasing, decreasing);  

 MA3)  An image of an amount of change of the output variable while    

   considering changes in fixed amounts of the function's domain;  

 MA4)  An image of rate/slope for contiguous intervals of the function's domain;  

 MA5)  An image of continuously changing rate over the entire domain;  

 MA6)  An image of increasing and decreasing rate over the entire domain.  

 

 

FIG. 25.1. Framework for covariational reasoning. 

 

The following section provides a description of the framework categories in the 

context of the Bottle Problem, a problem that we used in our earlier research 

(Carlson, 1998; Carlson et al., 2000). In this chapter, we focus on the graphical 

representation system, as this was the initial context in which we observed 

students’ difficulties in applying covariational reasoning (Carlson, 1998).  
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The Bottle Problem 

Imagine this bottle filling with water. Sketch a graph of the height as a function 

of the amount of water that is in the bottle. 

  
 

 
FIG. 25. 2. Earlier version of the bottle problem. 

 

 

FRAMEWORK DESCRIPTION 
 

MA1) An image emerges of the water level changing while imagining increasing 

amounts of water in the bottle.  

MA2)  An image emerges of the height increasing, as the amount of water in 

the bottle increases.  

MA3) A fixed amount of water is imagined being added to the bottle, while 

concurrently constructing an image of the height of the water inside the bottle. 

This step is repeated by imagining the same fixed amount of water being added 

to the bottle with the construction of a new image of the amount of change in the 

height until the bottle is imagined as being full. 

MA4)  An image of the slope/rate of height change with respect to an 

imagined fixed amount of water is constructed. As successive amounts of water 

are imagined, the rate of change of the height with respect to the amount of 

water is imagined and adjusted. This process is repeated until the empty bottle 

becomes full. Representing these changing rates on a graph involves the 

construction of successive line segments with the slopes adjusted as each new 

amount of water is imagined.  

MA5) An initial continuous image of the slope/rate of height change with 

respect to volume is formed. As the volume of water is imagined to change 

continuously, the rate of change of height with respect to volume (e.g., slope) is 

continuously adjusted.  In the context of a graph, this results in the construction 

of a smooth curve. 
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MA6) An initial image of changing rate emerges. While imagining the filling 

of an empty bottle, distinctions are made between the decreasing rate in the 

bottom half of the spherical part, the increasing rate in the top half of the sphere 

and the constant rate in the straight neck. In the context of the graph, this results 

in the formation of a concave down construction, followed by a concave up 

construction, followed by a straight line. Inflection points are interpreted as 

situations where the rate changes from increasing to decreasing, or decreasing to 

increasing.  

 

This framework both guided the development of covariation activities and 

served as a lens for analyzing and describing students' thinking.  (See Appendix 

A for a more complete description and explanation of the Covariation 

Framework.) 

 

 

EARLY ATTEMPTS TO TEACH STUDENTS TO REASON 
ABOUT DYNAMIC EVENTS 

 

Curricular activities were designed to promote the development of 16 preservice 

secondary teachers' covariational reasoning abilities. Worksheets were written to 

assist these students in acquiring the ability to reason about dynamic events, as 

described in the covariation framework. This curriculum included activities that 

asked students to represent, in real time, various dynamic events and to produce 

graphs of specific dynamic behaviors. Students were prompted to verbalize the 

rationale for their constructions (e.g., Explain why the generated graph is 

smooth.  In your own words, explain what this graph conveys about the 

changing rate of this situation.  Discuss the nature of the changing shape of the 

graph in the context of the dynamic event.) This initial instructional 

intervention, although based on a research foundation, did not employ the 

models and modeling perspective.  In particular, the activities were not designed 

to adhere to the six principles of model-eliciting activities. Pre- and post-

instructional assessments indicated only moderate movement in these students' 

covariational reasoning abilities.  For instance, only a few of these preservice 

teachers showed significant improvement in their ability to construct and 

represent images of slope/rate and changing slope/changing rate while 

imagining continuous change in the amount of water (MA5 and MA6). 

Although specific students appeared to demonstrate some improvements, 

evidence of incomplete understanding and blurred concepts (Monk, 1992) 

continued to persist among most of the participants in this earlier study.  

The insights gained from these early instructional interventions provided 

both the foundation and motivation for developing covariation-based model-

eliciting activities.  As a first step in creating these new activities, we modified 

the Bottle Problem to adhere to the six principles of model-eliciting activities.  
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INTEGRATING A MODELS AND MODELING 
PERSPECTIVE 

 

In the first chapter of this book, Lesh and Doerr describe the defining properties 

of model-eliciting activities (p. 6). In this section, we describe how we have 

used these guidelines to develop activities to promote and reveal acts of 

covariational reasoning.  

Model-eliciting activities involve local conceptual development, a property 

that is especially relevant for achieving our goals. According to Lesh and Doerr 

(chap. 1, this volume), 

 

…model-eliciting activities can be designed so that they lead to 

significant forms of learning (Lesh, Hole, Hoover, Kelly, & Post, 

2000). Furthermore, because significant forms of conceptual 

development occur during relatively brief periods of time, it often is 

possible to observe the processes that students use to extend, 

differentiate, integrate, refine, or revise the relevant constructs.  

Consequently, to investigate cognitive development, it is possible for 

researchers to go beyond descriptions of successive states of knowledge 

to observe the processes that promote development from one state to 

another. (Lesh, 1983, p. 21).  

 

If activities can be designed to promote significant development of 

covariational reasoning in a short period of time, they have the potential to 

provide valuable insights for researchers and curriculum developers.  Activities 

that promote local conceptual development may be useful for practicing teachers 

as well.  In addition to the instructional value of the activities, the teacher is able 

to observe and analyze subtle aspects of each student's mathematical 

development, rather than only the more obvious problems and insights of a 

small and vocal group. When working through a model-eliciting activity, 

students are asked to produce descriptions, explanations, procedures, and 

constructions.  These types of products reveal much of the process that leads to 

their development.  In essence, the students leave a paper trail outlining, in their 

own words, the reasoning they used when completing the activity.  

When working with traditional curricular activities and assessments, teachers 

frequently find themselves trying to figure out what a particular solution tells 

them about a student's thinking.  In most cases, they can say nothing more than 

the student did or did not do the problem correctly.  They are often unable to say 

anything about what the student does know or what they can do.  However, 

when we examine solutions to model-eliciting activities, it is easier to observe 

how students are thinking about a mathematical situation and to find out what 

they can do.  The products, themselves, allow us to observe their processes (e.g., 

reasoning, verifying, and justifying), and not just the failure to produce an 

expected answer. 
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CONVERTING THE BOTTLE PROBLEM TO A 
 MODEL-ELICITING ACTIVITY 

 

The Bottle Problem has been a valuable research tool for revealing students' 

covariational reasoning abilities.  However, by incorporating model-eliciting 

principles into this problem, we believe it is possible to create an activity that 

revealed even greater insights into the student's thinking, and one that was more 

effective in developing students' covariational reasoning. The new model-

eliciting version of the bottle activity (Fig. 25.2) is presented in Fig. 25.3, and is 

followed by a discussion of the new activity in light of the six principles for 

developing model-eliciting activities. 

 

 

 

Bottle Model-Eliciting Activity 

Dear Math Consultants, 

 Dynamic Animations has just been commissioned to animate a scene in which a 

variety of bottles will be filled with fluid on screen.  We need your help to make sure this 

scene appears realistic.  

We need a graph that shows the height of the fluid given the amount of fluid in 

the bottle (a height/volume graph).  Below, we have provided a drawing of one of the 

bottles used in the scene.  Please provide a graph for this bottle and a manual that tells us 

how to make our own graph for any bottle that may appear in this scene.  

 

 

  
 

 

FIG. 25. 3. The model-eliciting version of the bottle problem. 
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INCORPORATING THE SIX PRINCIPLES 

 

The process of transforming the Bottle Problem into a model-eliciting activity 

was guided by the six principles (Lesh et al., 2000). We approached our task by 

discussing aspects that would be desirable in the new activity and made choices 

about the task-design using both these criteria and the six principles.  An 

elaboration of this process follows.   

The Reality Principle.  Will students make sense of the situation by extending 

their own knowledge and experiences? Perhaps the most challenging part of 

adapting a traditional activity to a model-eliciting activity is satisfying the 

requirements of the reality principle. For this problem, we needed to devise a 

context that motivated or created a need to apply covariational reasoning. The 

context that we created involved a production studio that needed assistance in 

producing realistic animations of bottles filling with liquid.  

This context required the use of covariational reasoning because such a 

studio would need to coordinate the fluid level of the bottle with time. Because 

we wanted to compare our results with earlier findings, we decided to require 

students to coordinate the fluid level (height) with the amount of fluid in the 

bottle (volume), though a truly realistic task would involve the coordination of 

height with time. Additionally, our research goals were focused on covariational 

reasoning in the graphical representation because this representation is so crucial 

in mathematics and has been shown to be problematic for students. Therefore, 

our task focused on representing the situation graphically, although it is likely 

that a real production studio would use a different approach.  

These decisions limited the role of the realistic context of the activity. 

However, as is conveyed below, the activity is consistent with the other five 

principles, resulting in a task that is both thought revealing and model eliciting. 

The Model Construction Principle. Does the task immerse students in a 

situation in which they are likely to confront the need to develop (or refine, 

modify, or extend) a mathematically significant construct? Does the task involve 

constructing, explaining, manipulating, predicting, or controlling a structurally 

significant system? As previously mentioned, the original activity partially met 

these criteria by requesting that students produce a graph of the situation.  

However, because the original activity only requested that students produce a 

graph for one bottle, we modified the activity by prompting students to develop 

a general model (i.e., a manual) for analyzing this type of dynamic situation.  

(This activity actually required the production of two models, the graph and the 

instruction manual. However, our reference to the model refers to the instruction 

manual because this was the primary product that we requested.)  

The Self-Evaluation Principle.  Does the activity promote self-evaluation on 

the part of the students? This principle was addressed by requesting that 

students produce a manual for any bottle.  This request provided students criteria 

for assessing the quality of their model.  In particular, the students needed to 

determine whether their instruction manual was an effective guide for producing 

graphs of different-shaped bottles.  
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The Construct Documentation Principle.  Will the question require students 

to reveal their thinking about the situation? This was the primary motivation for 

developing a model-eliciting version of the Bottle Problem.  In order to move 

our research forward we needed greater insight into the thinking involved in 

graphically representing a dynamic situation. The students revealed how they 

thought about the situation by creating an instruction manual.  

The Construct Generalization Principle. Does the model provide a general 

model for analyzing this type of dynamic situation? The requirement that 

students produce an instruction manual prompted students to generalize their 

covariational reasoning in the context of the bottle (Fig. 25.2) to create a model 

that is applicable to a wide variety of different-shaped containers. 

The Simplicity Principle. Is the situation simple?  The situation made a 

specific request for students to represent graphically the filling of a bottle.  As 

such, the situation was not particularly complex.  Further analysis is necessary to 

determine whether this situation is simple enough to allow it to play the role of a 

prototypical problem.  

 

 

A SMALL STUDY EMPLOYING THE MODELS AND 
MODELING PERSPECTIVE 

 

Following the creation of the model-eliciting activities, a small study with 22 

preservice elementary teachers, enrolled in the course “Mathematics for 

Elementary School Teachers” at a large public university, was conducted.  The 

class was taught using a student-centered approach with students regularly 

working in groups while making their mathematical constructions. All students 

had completed a course equivalent to college algebra, with four students also 

completing introductory calculus at the university. The students were paid for 

their participation and were informed that their willingness to participate 

required that they make a strong effort to think through three model-eliciting 

activities. Students were videotaped outside of class and each group of two to 

four students spent approximately 4 hours completing the tasks. The subjects 

were comfortable conversing with one another because the groups were 

essentially the same as their class groups.  

During the first session, students were asked to physically model the graphs 

of seven different functions using calculators and CBRs (Computer Based 

Rangers; these devices consist of motion detectors linked to graphing 

calculators. As the students walk, their motion is represented on the calculator 

screen in the form of a distance/time graph.)  In addition to actually producing 

each graph, they were asked to describe the movement that would generate a 

specific graph.  After completing this task, they were given a model-eliciting 

task that required them to write a strategy guide to prepare an individual to 

physically model any graph without experimentation. 
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CBR Model-Eliciting Activity 

 

Dr. Erikson’s physics class is preparing for a lab exam about motion.  One of the 

things they will be required to do is to use a CBR to reproduce (by walking) 

distance-time graphs that Dr. Erikson draws on the board.  They do not know 

what graphs they will be asked to produce in advance.  Please write a strategy 

guide that will prepare Dr. Erickson's students to reproduce any possible graph.  

Below are two graphs that Dr. Erikson has used in the past.  Note: the students 

will be allowed only one attempt to produce a graph.  

 
FIG. 25.4. The CBR model-eliciting activity. 

 

The second model-eliciting activity involved a distance/time graph in the 

context of an airplane flight. The final activity was the model-eliciting version 

of The Bottle Problem described earlier (Fig. 25.3).  

 

 

SELECT RESULTS 

 

Analysis of students' manuals and their discussions while writing the manuals 

revealed new information about students' covariational reasoning abilities, as 

well as valuable insights regarding the effectiveness and usefulness of the 

activities. Select results are presented to illustrate the ways in which these 

activities revealed students' thought processes. (Student solutions are available 

for all groups for both the CBR activity and the Bottle Problem.  See 

Appendixes B and C.)  

Were the activities thought-revealing?  Consider the following solution that 

was produced by one group for the model-eliciting version of the Bottle Problem 

(Fig. 25.5). 

This solution provides interesting insights into how this group thought about 

the situation. While their thinking (Fig. 25.5) appeared consistent with the 

general characterization of MA4 of the covariational framework, it differed from 

the actual description provided in the framework.  Recall that MA4 involves the 

construction of an image of the slope/rate of the change in height with respect to 

an imagined amount of water.  In this case, however, the students did not 

imagine the rate of change in height with respect to an imagined fixed  amount 

of water.  Instead, their image of rate appeared to depend on the width (cross-

sectional area) of the bottle at a given height, and was determined by comparing 

the volume and height for a small disk of water. This observation was also 

substantiated by analyzing the videotaped interactions among the members of 

this group. 
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Bottle-Graph Manual  

 

1. The smaller the area, the smaller the volume.  However, the bigger the area, 

the bigger the volume (e.g., #1, 2, 3 on “Graph #1” (as labeled on the bottle). 

2. If you don’t use a lot of volume the height increases more rapidly.  If you do 

use a lot of volume, the height will increase, just not as rapidly as the volume. 

3. The slope determines how high and how far across the line will be. 

 

FIG. 25.5. An example of the students' solutions. 

 

Mary:   “How do you explain that?” 

Chris:   “Like when you have a little bit of volume, you don’t need a lot 

volume  but you have a lot of height.  And when you have a big area 

and less height, you are going to have more volume and its going to 

go flat.” 

Joni:   “Or as the unit goes more parallel to each other, whether if its this 

way or this way, it's going to be less height.” 

Mary:   “What if we said it this way, on a graph the greater the height, the 

steeper the graph will be.  The wider it is, the more level it is.  Do you 

know what I am saying?  How do we say that?” 

Chris:   “ The reason the graph is like this is because there is so much volume 

needed for little area.” 

Joni:   “As the sides go out, it requires more fill.” 

Chris:   “Requires more volume verses height.” 

Joni:   “So if the unit is not so wide, it requires less volume and more 

height…” 

 
FIG. 25. 6. Transcript excerpt. 
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Figure 25.6 provides excerpts of students' conversations as they responded to 

this task.  As is revealed, the process of negotiating one final product 

encouraged individuals to justify and verbalize their responses (e.g., the reason 

for the graph is because there is so much volume) and to compare their own 

ideas with those of the group. These negotiations provided additional insights 

into each individual's concept development and reasoning patterns. As can be 

observed (Fig. 25.6), these students appeared to express different justifications 

for the graph's shape (i.e., Mary: “The greater the height, the steeper the graph 

the wider it is, the more level it is.”  Chris: “When you don’t need a lot volume, 

you have a lot of height.”  Joni; “If it is not so wide, it requires less volume and 

more height.”).  Not only do these expressions deviate from the language of the 

framework, but like the group's manual, they express conceptualizations that 

also differ from the ideas of the framework (i.e., the students are not 

coordinating the output variable, height, while imagining changes in the input 

variable, volume). This example is especially significant because it provided 

implications for the refinement of the Covariation Framework.  In particular, it 

suggests that the language used in describing MA4 is not general enough to 

describe the various ways that a student might think about rate of change of one 

quantity with respect to another.  

The thought-revealing nature of these activities is particularly important to 

us because we are introducing these activities in our courses for preservice 

secondary teachers. We are encouraging these future teachers to use these 

activities to gain access to the developing understandings and reasoning patterns 

of their students. The implications for our students' future teaching practices are 

significant, because they are being introduced to an efficient and powerful 

means of gaining regular access to their students' thinking.  

 

 

IMPACT OF THIS STUDY ON OUR FUTURE RESEARCH 
 

In the previous section, we provided one example of the impact of this study on 

our ongoing refinement of the covariation framework. In this section, we 

describe some other implications of this study on our continuing investigation of 

covariation reasoning. The written solutions and the videotape transcripts 

enabled us to capture many instances of covariational reasoning, spanning the 

entire range of the Covariation Framework. However, the students' expressions 

of these mental actions sometimes differed qualitatively from the descriptions 

provided within the framework.  These observed differences point to questions 

for further research as well as potential refinements of the covariation reasoning 

framework.  

Students often treated height as the input variable. In the case of the bottle 

activity it was expected that students would treat the height as a function of 

volume because they were asked to create a height versus volume graph. 

However, the models produced by the students revealed that they frequently 

thought about the volume as the dependent variable. This suggested that our 
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interpretation of the framework in situations where the function underlying the 

dynamic situation is invertible needs to be more flexible.  

Students often treated time as the input variable. This was revealed in the 

students’ written products and was evidenced by their use of terms and phrases 

like faster, slower, quickly, longer, and more time to fill. Their choice to replace 

the independent variable (volume) with time appeared to reduce the cognitive 

load for the students by allowing them to focus their attention on the changing 

nature of one variable or quantity. However, there was evidence that the students 

who used this approach did not completely understand the relationship between 

the height versus time graph and height versus volume graph. When asked, one 

group indicated that if the water were not poured at a constant rate, their height 

versus volume graph would be affected (a misconception). These findings 

suggest that the role of time in covariation reasoning needs to be further 

explored. 

The groups did not describe a process in their instruction manuals that 

involved either point plotting or curve smoothing. All of the groups were able to 

produce correct smooth graphs for the given bottle.  However, none of the 

groups described a process that would lead to a smooth curve by point plotting 

or the refinement of line segments representing average rates of change (even 

when their initial constructions used one of these two approaches).  Instead, they 

gave instructions that focused on determining the rate of change at any point on 

the bottle and described the rate of change as an object that they could move 

along the domain. This observation should provide important implications for 

our continued investigation of covariational reasoning.  In particular, it suggests 

a possible description of the development needed for students to form a 

continuous image of rate of change.  

 

 

CONCLUSIONS 

 

The students' final products, reasoning abilities, and persistence exceeded our 

expectations for the study.  All 22 of these preservice elementary teachers 

provided a reasonable graph for the bottle activity.  Factors that appeared to 

contribute to their successes include: the requirement that students verbalize 

their reasoning and both receive and give feedback to their peers (a feature of 

the model-eliciting activities); the requirement that students continue refining 

their solutions until a reasonable answer was produced (also a feature of the 

model-eliciting activities); and, the fact that they were allowed to take whatever 

time they needed to complete the tasks.  In retrospect, these activities appeared 

to have the effect of placing each student in a role similar to that of a teacher.  

They were expected to provide a clear, logical, and defendable rationale for their 

solution, and like good teachers, they rose to the challenge.   

The results of this study suggest that informal exploration may have 

promoted greater engagement and sense-making on the part of these students. 

Further, the unexpected successes exhibited by these preservice elementary 
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teachers suggests a need for continued investigation of the power of these 

activities in transforming context-specific notions into more general models.  

As a follow-up to this study, we have begun developing model-eliciting 

activities to promote students' development and understanding of the major 

conceptual strands of introductory calculus. We call for others to join us in 

investigating the effectiveness of model-eliciting activities for developing other 

mathematical concepts in undergraduate mathematics.  We also call for 

additional investigations into the effectiveness of model-eliciting activities for 

promoting undergraduate students' reasoning, communication and problem 

solving abilities.  
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